The La Tinta pole revisited: Paleomagnetism of the Neoproterozoic Sierras Bayas Group (Argentina) and its implications for Gondwana and Rodinia

The Late Ediacaran to Cambrian Sierras Bayas Group (Villa Mónica, Cerro Largo, Olavarría and Loma Negra Formations) and the Cerro Negro Formation, exposed along the Tandilia system in the province of Buenos Aires (Argentina) were revisited and studied paleomagnetically. Our results supersede those o...

Full description

Bibliographic Details
Language:unknown
Published: 2013
Subjects:
Online Access:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03019268_v224_n_p51_Rapalini
https://hdl.handle.net/20.500.12110/paper_03019268_v224_n_p51_Rapalini
Description
Summary:The Late Ediacaran to Cambrian Sierras Bayas Group (Villa Mónica, Cerro Largo, Olavarría and Loma Negra Formations) and the Cerro Negro Formation, exposed along the Tandilia system in the province of Buenos Aires (Argentina) were revisited and studied paleomagnetically. Our results supersede those of Valencio et al. (1980) for the La Tinta Formation (old stratigraphic name of these units). Three hundred and twenty-eight samples were collected from forty-four sites in gently folded to subhorizontal strata distributed along the whole stratigraphic succession. Detailed paleomagnetic study comprised systematic stepwise demagnetization by both AF and thermal methods, the latter being generally the most effective in isolating the characteristic remanence. Different magnetic components were defined from different units of the succession. Besides a recent, probably viscous, secondary component (component A), the most widespread magnetic remanence (component B) is a dual-polarity post-tectonic secondary remanence. This component, carried by both hematite and magnetite, corresponds to that originally determined by Valencio et al. (1980) and previously interpreted as primary. This component found in all carbonatic rocks of Villa Mónica and Loma Negra Formations as well as in several claystones and siltstones of the Olavarría Formation do not pass conglomerate and regional tilt tests. The mean in situ direction of component B is Dec: 359.8°, Inc: -63.3°, n: 85 samples, k: 24, α95: 3.2° and yields a paleomagnetic pole virtually identical to the previous one of Valencio and colleagues. It also matches those recently determined from secondary magnetizations in carbonatic and clastic Ediacaran units exposed in Uruguay. The pole positions suggest a Late Permian-Triassic age as the more likely for the acquisition of component B and reveal the presence of a widespread remagnetization event that affected very large areas of the Rio de la Plata craton. Despite this widespread event, some clastic units (claystones, marls) apparently ...