Evaluation of Probabilistic Quality and Value of the ENSEMBLES Multimodel Seasonal Forecasts: Comparison with DEMETER

The performance of the new multimodel seasonal prediction system developed in the framework of the European Commission FP7 project called ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) is compared with the results from the previous project [i.e., Development of a Europea...

Full description

Bibliographic Details
Published in:Monthly Weather Review
Main Authors: Alessandri A, Borrelli A, Navarra A, Arribas A, Deque M, Rogel P, Weisheimer A
Format: Article in Journal/Newspaper
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/11585/789565
https://doi.org/10.1175/2010MWR3417.1
Description
Summary:The performance of the new multimodel seasonal prediction system developed in the framework of the European Commission FP7 project called ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) is compared with the results from the previous project [i.e., Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER)]. The comparison is carried out over the five seasonal prediction systems (SPSs) that participated in both projects. Since DEMETER, the contributing SPSs have improved in all aspects with the main advancements including the increase in resolution, the better representation of subgrid physical processes, land, sea ice, and greenhouse gas boundary forcing, and the more widespread use of assimilation for ocean initialization. The ENSEMBLES results show an overall enhancement for the prediction of anomalous surface temperature conditions. However, the improvement is quite small and with considerable space time variations. In the tropics, ENSEMBLES systematically improves the sharpness and the discrimination attributes of the forecasts. Enhancements of the ENSEMBLES resolution attribute are also reported in the tropics for the forecasts started 1 February, 1 May, and 1 November. Our results indicate that, in ENSEMBLES, an increased portion of prediction signal from the single-models effectively contributes to amplify the multimodel forecasts skill. On the other hand, a worsening is shown for the multimodel calibration over the tropics compared to DEMETER. Significant changes are also shown in northern midlatitudes, where the ENSEMBLES multimodel discrimination, resolution, and reliability improve for February, May, and November starting dates. However, the ENSEMBLES multimodel decreases the capability to amplify the performance with respect to the contributing single models for the forecasts started in February, May, and August. This is at least partly due to the reduced overconfidence of the ENSEMBLES single models with respect to the DEMETER ...