Calculating the surface melt rate of Antarctic glaciers using satellite derived temperatures. GeoComputation 2019

Understanding the surface melt rates of glaciers in relation to temperature is highly relevant given the predicted climate change scenarios and the fact that ice is a significant part of the physical geography of planet earth. At the global scale, ice melt from the major ice caps on earth are predic...

Full description

Bibliographic Details
Main Authors: Lars Brabyn, Glen Stichbury
Format: Conference Object
Language:unknown
Published: 2019
Subjects:
Ice
Online Access:https://doi.org/10.17608/k6.auckland.9869771.v2
https://figshare.com/articles/conference_contribution/Calculating_the_surface_melt_rate_of_Antarctic_glaciers_using_satellite_derived_temperatures/9869771
Description
Summary:Understanding the surface melt rates of glaciers in relation to temperature is highly relevant given the predicted climate change scenarios and the fact that ice is a significant part of the physical geography of planet earth. At the global scale, ice melt from the major ice caps on earth are predicted to contribute significantly to sea level rise. At the habitat and ecosystem scale, ice melt could significantly change the availability of liquid water in alpine and polar regions. Given that liquid freshwater is a requirement for terrestrial biology and the scarcity of water limits biological activity, any change in the availability of liquid water will change habitats and ecosystems. This is particularly the case in Antarctica, which is considered the driest continent because of the sub-zero temperatures and the scarcity of liquid water limits biological activity (Fountain et al, 1999). The surface melt rate of glaciers in relation to temperature is difficult to calculate because stream gauges need to be located near glaciers and monitored regularly. Also, for most temperate glaciers around the world, a high proportion of glacier melt seeps into the ground water and is not captured by stream gauges. For this reason, temperature index models of melt rate are calibrated specifically for particular catchments, usually using regression models that compensate for ground water flow. The uniqueness of the McMurdo Dry Valleys in Antarctica provide an opportunity to calculate surface melt rates of glaciers because there are seven stream gauges that have been regularly maintained over the last decade, and ground water flow can be assumed to be insignificant because of permafrost (Chinn and Mason, 2015). The melting of glaciers is assumed to be restricted to the near surface because of the year-round subfreezing temperatures restrict hydraulic systems from developing (Dana, et al. 2002). This is not the case with temperate glaciers. The McMurdo Dry Valleys environment and flow gauge data provide a unique opportunity to ...