An autonomous hydrophone array to study the acoustic ecology of deep-water toothed whales

For vocal animals with distinctive calls, passive acoustic monitoring can be used to infer presence, distribution, and abundance provided that the calls and calling behaviour are known. Key to enabling quantitative acoustic surveys are calibrated recordings of identified species from which the sourc...

Full description

Bibliographic Details
Published in:Deep Sea Research Part I: Oceanographic Research Papers
Main Authors: Malinka, Chloe E., Atkins, John, Johnson, Mark P., Tønnesen, Pernille, Dunn, Charlotte A., Claridge, Diane E., Aguilar de Soto, Natacha, Madsen, Peter Teglberg
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://pure.au.dk/portal/da/publications/an-autonomous-hydrophone-array-to-study-the-acoustic-ecology-of-deepwater-toothed-whales(f308bb71-903d-4c5c-b579-aa025479b3a1).html
https://doi.org/10.1016/j.dsr.2020.103233
http://www.scopus.com/inward/record.url?scp=85080099375&partnerID=8YFLogxK
Description
Summary:For vocal animals with distinctive calls, passive acoustic monitoring can be used to infer presence, distribution, and abundance provided that the calls and calling behaviour are known. Key to enabling quantitative acoustic surveys are calibrated recordings of identified species from which the source parameters of the sounds can be estimated. Obtaining such information from free-ranging aquatic animals such as toothed whales requires multi-element hydrophone arrays, the use of which is often constrained by cost, the logistical challenge of long cables, and the necessity for attachment to a boat or mooring in order to digitise and store multiple channels of high-sample rate audio data. Such challenges are compounded when collecting recordings or tracking the diving behaviour of deep-diving animals for which the array must be deployed at depth. Here we report the development of an autonomous drifting deep-water vertical passive acoustic array that uses readily available off-the-shelf components. This lightweight portable array can be deployed quickly and repeatedly to depths of up to 1000 m from a small boat. The array comprises seven ST-300 HF SoundTrap autonomous recorders equally spaced on an 84 m electrical-mechanical cable. The single-channel digital sound recordings were configured to allow for synchronisation in post-processing using an RS-485 timing signal logged by all channels every second. We outline how to assemble the array, and provide software for time-synchronising the acoustic recorders. To demonstrate the utility of the array, we present an example of short-finned pilot whale clicks localised on the deep-water (700 m) array configuration. This array method has broad applicability for the cost-effective study of source parameters, acoustic ecology, and diving behaviour of deep diving toothed whales, which are valuable not only to understand the sensory ecology of deep-diving cetaceans, but also to improve passive acoustic monitoring for conservation and management.