Dynamics of CO2 fluxes from boreal peatlands

Carbon dioxide (CO2) is one of the most important factors of the Earth’s carbon cycle. Peatlands are well-known to be a long term sink for atmospheric carbon dioxide. Under changing environmental conditions, the carbon balance and hence the CO2 fluxes can be significantly changed, and peatlands may...

Full description

Bibliographic Details
Main Author: Schneider, Julia
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2011
Subjects:
Online Access:https://epub.ub.uni-greifswald.de/frontdoor/index/index/docId/838
https://nbn-resolving.org/urn:nbn:de:gbv:9-001087-4
https://epub.ub.uni-greifswald.de/files/838/Dynamics_of_CO2_fluxes_from_boreal_peatlands_Schneider_Julia.pdf
Description
Summary:Carbon dioxide (CO2) is one of the most important factors of the Earth’s carbon cycle. Peatlands are well-known to be a long term sink for atmospheric carbon dioxide. Under changing environmental conditions, the carbon balance and hence the CO2 fluxes can be significantly changed, and peatlands may even become a significant atmospheric carbon source. To be able to predict the changes in climatic conditions and their effects on ecosystems, it is important to understand the contemporary CO2 exchange of the ecosystems. Many studies on peatland CO2 fluxes have been conducted in the boreal zone of North America and Scandinavia. Still little scientific evidence is available from peatland ecosystems of boreal Russia. This dissertation presents the detailed investigation of CO2 dynamics and the relevant processes and environmental factors from the boreal peatland site Ust-Pojeg (61°56'N, 50°13'E) in Komi Republic, northwest Russia. On the small spatial scale (microform), the investigated peatland was characterised by high variability in vegetation composition and coverage as well as in water table level which resulted in large variability in CO2 fluxes not only between the microform types but also within one microform type. The cumulative flux over the investigation period for the different microforms ranged from strong CO2 sources to CO2 sinks. An area-weighted estimate for the entire peatland showed that it was a CO2 source for the investigation period, which was characterised by average conditions in terms of precipitation and temperature. The CO2 fluxes were measured at different scales: by the closed chamber method at the microform scale and by the eddy covariance technique at the ecosystem scale. Three different upscaling methods were used to compare the fluxes. Irrespective of the upscaling methods, the discrepancies between the estimates based on the upscaled chamber measurements and estimates based on measurements by the eddy covariance technique were high. The high spatial heterogeneity of the vegetation and ...