Social system and astrovirus transmission in bats of the European temperate zone

Bats belong to the most gregarious and diverse mammals with highly complex social behaviors. Despite extensive research on their ecology and social behavior in some bat species, gained insights are restricted to only few of the more than 1300 species. In the recent past, bats have also become a cent...

Full description

Bibliographic Details
Main Author: Zeus, Veronika Maria
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2020
Subjects:
Online Access:https://epub.ub.uni-greifswald.de/frontdoor/index/index/docId/4093
https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-40936
https://epub.ub.uni-greifswald.de/files/4093/Doktorarbeit_Zeus_2020_Bibliotheksversion.pdf
Description
Summary:Bats belong to the most gregarious and diverse mammals with highly complex social behaviors. Despite extensive research on their ecology and social behavior in some bat species, gained insights are restricted to only few of the more than 1300 species. In the recent past, bats have also become a central topic of a different branch of research: Since the 1990s bats came to the fore of virologists and immunologists due to the bats’ apparent importance as reservoir hosts and vectors of several (mostly tropical) diseases. While this research is focused mainly on emerging infectious diseases linked to bats, and their zoonotic potential, little has been invested regarding the link between disease transmission and bat social systems. In my work, I aim at filling this gap by merging automated daily roosting observations, social network analysis, and a virological screening in Natterer’s bats (Myotis nattereri). In a collaborative approach, my co-workers and I analyzed the social structure of individually marked Natterer’s bats, their astrovirus detection rate and transmission pathways within their colony, as well as roosting interactions between different co-occurring con- and heterospecific bat colonies. We discovered Natterer’s bats to display a very divergent social network structure that contradicts the findings of previous studies on large fission-fusion groups. Contrary to the modular social network structure found in e.g. primates or other bats species, the social network of Natterer’s bats consists of only one highly interconnected community. Moreover, although the close proximity between bat hosts in the colony should strongly promote direct transmission, we found indications that astrovirus infections follow at least partly an indirect transmission pathway via contaminated roost use. Lastly, our results prove that co-occurring con- and heterospecific bat colonies, e.g. as in this study Natterer’s bats, brown long-eared bats and Bechstein’s bats, can influence each other in their roost use by avoiding ...