Mechanisms involved in anti-viral immune response of European bats against Lyssaviruses

Bats (Chiroptera) form the second largest order of mammals and with over 1,250 species, they represent about 20% of all mammalian species worldwide. They are the only mammals with true and sustained flight and distributed all over the world except the arctic regions. Moreover, bats entered specific...

Full description

Bibliographic Details
Main Author: Zhu, Yaqing
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2019
Subjects:
Online Access:https://epub.ub.uni-greifswald.de/frontdoor/index/index/docId/3358
https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-33580
https://epub.ub.uni-greifswald.de/files/3358/Monograph-final-Zhu.pdf
Description
Summary:Bats (Chiroptera) form the second largest order of mammals and with over 1,250 species, they represent about 20% of all mammalian species worldwide. They are the only mammals with true and sustained flight and distributed all over the world except the arctic regions. Moreover, bats entered specific ecological niches and with their food spectra, they reduce different arthropod populations as well as disperse seeds and pollen of plant species in various regions and habitats. Bats also have a crucial role in spreading high-pathogenic and zoonotic viruses, harbor in general more viruses (zoonotic and non-zoonotic), and, related to the species, number even more than rodents. However, clinical symptoms of viral diseases are rarely reported in bat communities. Also seroconversions after infection were not reported for a variety of viruses found in bats. Since the incidence of virus-positive bats estimated in passive surveillance studies is usually very low, it is a question how such viruses can use bats as reservoir hosts. There is obviously a special evolutionary relationship between the pathogens and bats as hosts, which are based on possibly physiologic adaptations also in resistance and immunity. In this thesis, the two lyssaviruses, European Bat Lyssavirus 1 and 2 (EBLV-1 and -2) were chosen as a model to investigate the immune response of European bats against viral infection in vitro. Lyssaviruses are the causative agents of rabies, a fatal zoonotic disease with neurotropic characteristics. One main question to investigate was in which way bats act as reservoir host and developed a high disease resistance. The present thesis is based on three hypotheses about innate immune response against lyssavirus infection: A) In bats specific peripheral resistance mechanisms evolved which reduce the risk of systemic viral infection after a hypothesized airborne transmission and infection via nasal epithelium supported by the social structure of and communication within bat communities. B) The co-evolution of EBLV and the ...