Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo

A statistical forecast of the occurrence of extreme climatic events was performed in the Colombian Caribbean Sea Basin (CMCC), through the so-called “return periods” (RP), estimated by adjusting the Generalized Extreme Value (GEV) distribution. The correlation of extreme events with the North Atlant...

Full description

Bibliographic Details
Published in:Annals of the New York Academy of Sciences
Main Author: Martínez Pedraza, Alexander
Other Authors: Villegas Bolaños, Nancy Liliana, Universidad Nacional de Colombia, CENIT
Format: Text
Language:Spanish
Published: Bogotá - Ciencias - Maestría en Ciencias - Meteorología 2019
Subjects:
GEV
ODP
OAN
PDO
NAO
Online Access:https://repositorio.unal.edu.co/handle/unal/78084
id ftuncolombiair:oai:repositorio.unal.edu.co:unal/78084
record_format openpolar
institution Open Polar
collection Repositorio Institucional Universidad Nacional de Colombia
op_collection_id ftuncolombiair
language Spanish
topic 550 - Ciencias de la tierra
551 - Geología
hidrología
meteorología
986 - Colombia y Ecuador
GEV
extremos climáticos
temperatura superficial del mar
altura superficial del mar
velocidad del viento
ODP
ENOS
OAN
climatic extremes
Sea surfece level
Sea Surface Height
wind speed
PDO
ENSO
NAO
spellingShingle 550 - Ciencias de la tierra
551 - Geología
hidrología
meteorología
986 - Colombia y Ecuador
GEV
extremos climáticos
temperatura superficial del mar
altura superficial del mar
velocidad del viento
ODP
ENOS
OAN
climatic extremes
Sea surfece level
Sea Surface Height
wind speed
PDO
ENSO
NAO
Martínez Pedraza, Alexander
Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
topic_facet 550 - Ciencias de la tierra
551 - Geología
hidrología
meteorología
986 - Colombia y Ecuador
GEV
extremos climáticos
temperatura superficial del mar
altura superficial del mar
velocidad del viento
ODP
ENOS
OAN
climatic extremes
Sea surfece level
Sea Surface Height
wind speed
PDO
ENSO
NAO
description A statistical forecast of the occurrence of extreme climatic events was performed in the Colombian Caribbean Sea Basin (CMCC), through the so-called “return periods” (RP), estimated by adjusting the Generalized Extreme Value (GEV) distribution. The correlation of extreme events with the North Atlantic Oscillation (OAN), El Niño Southern Oscillation (ENOS) and the Pacific Decadal Oscillation (ODP) was estimated. Monthly series of Sea Level Height (ANM), Sea Surface Temperature (TSM) and Wind Speed (VV) for the period 1960 - 2016 were used. In each analyzed series, the RP of the 90th percentile and the 10th percentile, corresponding respectively to the thresholds of the maximum extreme values (VEmax) and the minimum extreme values (VEmin), were estimated. It was concluded that the VEmax of the ANM can be overcome in less than PR = 3 years and the VEmin have a small probability of occurrence. It was evidenced that, in the TSM, the occurrence of VEmax in the southwestern zone is expected before PR = 3 years and in the north it could be expected between PR = 4 and 5 years. It was found that for the VV the VEmax in the north and the south are expected to be exceeded at least once before PR = 9 years and in the center of the region, after PR = 20 years. The PR of VEmin in VV predominate between PR = 7 and 8 years in the eastern zone and PR = 11 years in the eastern south. The correlation of extremes with the indices of the analyzed phenomena determined that only ENSO has significant associations, presented in the VEmax of ANM and the VEmin of TSM. Se realizó en la Cuenca del Mar Caribe Colombiano (CMCC) un pronóstico estadístico de la ocurrencia de eventos extremos climáticos, a través de los llamados “periodos de retorno” (PR), estimados mediante el ajuste de la distribución de Valores Extremos Generalizada (GEV). Se estimó la correlación de los eventos extremos con la Oscilación Atlántico Norte (OAN), El Niño Oscilación del Sur (ENOS) y la Oscilación Decadal del Pacífico (ODP). Se utilizó series mensuales de la ...
author2 Villegas Bolaños, Nancy Liliana
Universidad Nacional de Colombia
CENIT
format Text
author Martínez Pedraza, Alexander
author_facet Martínez Pedraza, Alexander
author_sort Martínez Pedraza, Alexander
title Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
title_short Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
title_full Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
title_fullStr Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
title_full_unstemmed Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
title_sort modelos de pronóstico para eventos extremos en el mar caribe colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
publisher Bogotá - Ciencias - Maestría en Ciencias - Meteorología
publishDate 2019
url https://repositorio.unal.edu.co/handle/unal/78084
long_lat ENVELOPE(-66.833,-66.833,-68.617,-68.617)
geographic Del Viento
Pacific
geographic_facet Del Viento
Pacific
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_relation AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., & Sorooshian, S. (2013). Extremes in a changing climate: detection, analysis and uncertainty (1st ed., Vol. 65). https://doi.org/10.1007/978-94-007-4479-0
AghaKouchak, A., & Nasrollahi, N. (2010). Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resources Management, 24(6), 1229–1249. https://doi.org/10.1007/s11269-009-9493-3
Alvarez, R., Aguilera, J., Andrade, C. A., & Nowak, P. (1995). Caracterizacion general de la zona de surgencia en la guajira colombiana. Rev. Acad. Colornb. Cienc., 19(75), 679–694.
Amador, J. A. (2008). The Intra-Americas Sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146, 153–188. https://doi.org/10.1196/annals.1446.012
Andrade, C. A. (2008). Cambios recientes del nivel del mar en Colombia. Deltas de Colombia: Morfodinámica y Vulnerabilidad Ante El Cambio Global, 103e122.
Andrade, C. (1993). Análisis de la velocidad del viento en el mar Caribe. Boletín Científico CIOH, 13, 33–44.
Andrade, C. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(96), 321–335.
Andrade, C. A., & Barton, E. D. (2005). The Guajira upwelling system. Continental Shelf Research, 25(9), 1003–1022. https://doi.org/10.1016/j.csr.2004.12.012
Andrade, C., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research, 105(C11), 26191. https://doi.org/10.1029/2000JC000300
Andrade, C., Barton, E. D., & Mooers, C. N. K. (2003). Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research: Oceans, 108(C6). https://doi.org/10.1029/2002JC001549
Balmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161. https://doi.org/10.1002/qj.2063
Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. John Wiley & Sons.
Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). Patrones de variabilidad de las temperaturas superficiales del mar en la costa caribe colombiana. Ciencias de La Tierra, 30(115), 195–208.
Church, J. a., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., … Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). https://doi.org/10.1017/CB09781107415315.026
Church, J. A., White, N. J., Coleman, R., Lambeck, K., & Mitrovica, J. X. (2004). Estimates of the regional distribution of sea level rise over the 1950-2000 period. Journal of Climate, 17(13), 2609–2625. https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2
Climate Prediction Center. (2000). Climate Prediction Center (CPC) Monthly North Atlantic Oscillation (NAO) teleconnection index. Retrieved from https://data.noaa.gov/harvest/object/e9707083-6cb0-4c74-9e26-9a7e7cffd1de/html
Coelho, C. a S., Ferro, C. a T., Stephenson, D. B., & Steinskog, D. J. (2008). Methods for Exploring Spatial and Temporal Variability of Extreme Events in Climate Data. Journal of Climate, 21(10), 2072–2092. https://doi.org/10.1175/2007JCLI1781.1
Coles, S. G. (2001). An introduction to Statistical Modeling of Extreme Values. In Springer Series in Statistics (1st ed.). https://doi.org/10.1007/978-1-4471-3675-0
Cowpertwait, P. S. P., & Metcalfe, A. V. (2009). Introductory time series with R (1st ed.). https://doi.org/10.1007/978-0-387-88698-5
Derryberry, D. R. (2014). Basic Data Analysis for Time Series with R. https://doi.org/10.1002/9781118593233
Deser, C., Alexander, M. A., Xie, S.-P., & Phillips, A. S. (2010). Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115–143. https://doi.org/10.1146/annurev-marine-120408-151453
Devis-Morales, A., Montoya-Sánchez, R. A., Bernal, G., & Osorio, A. F. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Applied Ocean Research, 69, 10–26. https://doi.org/10.1016/j.apor.2017.09.012
Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296
Giannini, a., Kushnir, Y., & Cane, M. a. (2001). Seasonality in the impact of ENSO and the North Atlantic High on Caribbean rainfall. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(2), 143–147. https://doi.org/10.1016/S1464-1909(00)00231-8
González-Herrera, F. J. (2013). Modelización estadística de eventos extremos de oleaje y nivel del mar. Universidad de las Palmas de Gran Canaria.
Griffies, S. M., Schmidt, M., & Herzfeld, M. (2010). Elements of mom4p1. In GFDL Ocean Group Technical Report No. 6 (Vol. 6). Retrieved from http://gfdl.noaa.gov/cms-filesystem-action/model$%5C_$development/ocean/mom-guide4p1.pdf
Griffies, S. M. (2012). Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Technical Report No. 7, 3(C), 1–631. Retrieved from http://mom-ocean.org/web/docs/project/MOM5%5C_elements.pdf$%5C$npapers3:
Grimm, A. M., & Tedeschi, R. G. (2009). ENSO and Extreme Rainfall Events in South America. Journal of Climate, 22(7), 1589–1609. https://doi.org/10.1175/2008JCLI2429.1
Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V, Brönnimann, S., Charabi, Y. A.-R., … Zhai, P. (2013). Observations: Atmosphere and Surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159–254). https://doi.org/10.1017/CBO9781107415324.008
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676–679.
Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic oscillation. In J. W. Hurrell, Y. Kushnir, G. Ottersen, & M. Visbeck (Eds.), The North Atlantic Oscillation Climatic Significance and Environmental Impact (pp. 1–35). Washington, DC: Wiley Online Library.
Ibañez, A. (2011). Análisis estad\’{\i}stico de valores extremos y aplicaciones. 102.
IDEAM. (2006). Pronóstico Pleamares y Bajamares Costa Caribe Colombiana 2007.
IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley, Eds.). Cambridge, UK, and New York, NY, USA: Cambridge University Press.
IPCC. (2013). Annex III: Glossary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1447–1466).
IPCC. (2013). CAMBIO CLIMÁTICO 2013 Bases f\’{\i}sicas Resumen para responsables de pol\’{\i}ticas Cambio Climático 2013 Bases f\’{\i}sicas. Contribución Del Grupo de Trabajo I Al Quinto Informe de Evaluación Del Grupo Intergubermental de Expertos Sobre El Cambio Climático - Resumen Para Responsables de Pol\’{\i}ticas.
Jones, P. D., Trenberth, K. E., Ambenje, P., Bojariu, R., Easterling, D., Klein, T., … Soden, B. (2007). Observations: surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, … H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 235–336). United Kingdom and New York, NY, USA.: Cambridge University Press, Cambridge.
Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., & Candela, J. (2012). Seasonal and Interannual Modulation of the Eddy Kinetic Energy in the Caribbean Sea. Journal of Physical Oceanography, 42(11), 2041–2055. https://doi.org/10.1175/JPO-D-12-048.1
Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., Debreu, L., & Lemarié, F. (2008). The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model. Ocean Modelling, 23(3–4), 82–101. https://doi.org/10.1016/j.ocemod.2008.04.002
Kenyon, J., & Hegerl, G. C. (2008). Influence of Modes of Climate Variability on Global Temperature Extremes. Journal of Climate, 21(15), 3872–3889. https://doi.org/10.1175/2008JCLI2125.1
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., … Fiorino, M. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
Kuleshov, Y., Qi, L., Fawcett, R., & Jones, D. (2008). On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophysical Research Letters, 35(14). https://doi.org/10.1029/2007GL032983
Letetrel, C., Marcos, M., Martín Míguez, B., & Woppelmann, G. (2010). Sea level extremes in Marseille (NW Mediterranean) during 1885-2008. Continental Shelf Research, 30(12), 1267–1274. https://doi.org/10.1016/j.csr.2010.04.003
Losada, I. J., Reguero, B. G., Méndez, F. J., Castanedo, S., Abascal, a. J., & Mínguez, R. (2013). Long-term changes in sea-level components in Latin America and the Caribbean. Global and Planetary Change, 104, 34–50. https://doi.org/10.1016/j.gloplacha.2013.02.006
Maldonado, T., Rutgersson, A., Amador, J., Alfaro, E., & Claremar, B. (2016). Variability of the Caribbean low-level jet during boreal winter: Large-scale forcings. International Journal of Climatology, 36(4), 1954–1969. https://doi.org/10.1002/joc.4472
Mantua, N. J. (1999). The Pacific decadal oscillation and climate forecasting for North America. Climate Risk Solutions, 1(1), 10–13.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 1069–1079.
Martin, E. R., & Schumacher, C. (2011). The caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. Journal of Climate, 24(22), 5935–5950. https://doi.org/10.1175/JCLI-D-11-00134.1
Masina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research: Oceans, 118(9), 3999–4016. https://doi.org/10.1002/jgrc.20313
Matthew B. Alkire, Craig Lee, Eric D’Asaro, Mary Jane Perry, Nathan Briggs, Ivona Cetinic´, and A. G. (2014). Journal of Geophysical Research : Oceans. Journal of Geophysical Research: Oceans, 119(1), 6121–6139. https://doi.org/10.1002/2014JC010105.Received
op_rights Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
Acceso abierto
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY-ND
op_doi https://doi.org/10.1196/annals.1446.012
https://doi.org/10.1017/CB09781107415315.026
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1002/9781118593233
https://doi.org/10.1017/CBO9781107415324.008
https://doi.org/10.1175/1520-0477(2
container_title Annals of the New York Academy of Sciences
container_volume 1146
container_issue 1
container_start_page 153
op_container_end_page 188
_version_ 1766137042889080832
spelling ftuncolombiair:oai:repositorio.unal.edu.co:unal/78084 2023-05-15T17:37:14+02:00 Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo Martínez Pedraza, Alexander Villegas Bolaños, Nancy Liliana Universidad Nacional de Colombia CENIT 2019-06-03 203 application/pdf https://repositorio.unal.edu.co/handle/unal/78084 spa spa Bogotá - Ciencias - Maestría en Ciencias - Meteorología Departamento de Geociencias Universidad Nacional de Colombia - Sede Bogotá AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., & Sorooshian, S. (2013). Extremes in a changing climate: detection, analysis and uncertainty (1st ed., Vol. 65). https://doi.org/10.1007/978-94-007-4479-0 AghaKouchak, A., & Nasrollahi, N. (2010). Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resources Management, 24(6), 1229–1249. https://doi.org/10.1007/s11269-009-9493-3 Alvarez, R., Aguilera, J., Andrade, C. A., & Nowak, P. (1995). Caracterizacion general de la zona de surgencia en la guajira colombiana. Rev. Acad. Colornb. Cienc., 19(75), 679–694. Amador, J. A. (2008). The Intra-Americas Sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146, 153–188. https://doi.org/10.1196/annals.1446.012 Andrade, C. A. (2008). Cambios recientes del nivel del mar en Colombia. Deltas de Colombia: Morfodinámica y Vulnerabilidad Ante El Cambio Global, 103e122. Andrade, C. (1993). Análisis de la velocidad del viento en el mar Caribe. Boletín Científico CIOH, 13, 33–44. Andrade, C. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(96), 321–335. Andrade, C. A., & Barton, E. D. (2005). The Guajira upwelling system. Continental Shelf Research, 25(9), 1003–1022. https://doi.org/10.1016/j.csr.2004.12.012 Andrade, C., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research, 105(C11), 26191. https://doi.org/10.1029/2000JC000300 Andrade, C., Barton, E. D., & Mooers, C. N. K. (2003). Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research: Oceans, 108(C6). https://doi.org/10.1029/2002JC001549 Balmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161. https://doi.org/10.1002/qj.2063 Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. John Wiley & Sons. Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). Patrones de variabilidad de las temperaturas superficiales del mar en la costa caribe colombiana. Ciencias de La Tierra, 30(115), 195–208. Church, J. a., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., … Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). https://doi.org/10.1017/CB09781107415315.026 Church, J. A., White, N. J., Coleman, R., Lambeck, K., & Mitrovica, J. X. (2004). Estimates of the regional distribution of sea level rise over the 1950-2000 period. Journal of Climate, 17(13), 2609–2625. https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2 Climate Prediction Center. (2000). Climate Prediction Center (CPC) Monthly North Atlantic Oscillation (NAO) teleconnection index. Retrieved from https://data.noaa.gov/harvest/object/e9707083-6cb0-4c74-9e26-9a7e7cffd1de/html Coelho, C. a S., Ferro, C. a T., Stephenson, D. B., & Steinskog, D. J. (2008). Methods for Exploring Spatial and Temporal Variability of Extreme Events in Climate Data. Journal of Climate, 21(10), 2072–2092. https://doi.org/10.1175/2007JCLI1781.1 Coles, S. G. (2001). An introduction to Statistical Modeling of Extreme Values. In Springer Series in Statistics (1st ed.). https://doi.org/10.1007/978-1-4471-3675-0 Cowpertwait, P. S. P., & Metcalfe, A. V. (2009). Introductory time series with R (1st ed.). https://doi.org/10.1007/978-0-387-88698-5 Derryberry, D. R. (2014). Basic Data Analysis for Time Series with R. https://doi.org/10.1002/9781118593233 Deser, C., Alexander, M. A., Xie, S.-P., & Phillips, A. S. (2010). Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115–143. https://doi.org/10.1146/annurev-marine-120408-151453 Devis-Morales, A., Montoya-Sánchez, R. A., Bernal, G., & Osorio, A. F. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Applied Ocean Research, 69, 10–26. https://doi.org/10.1016/j.apor.2017.09.012 Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296 Giannini, a., Kushnir, Y., & Cane, M. a. (2001). Seasonality in the impact of ENSO and the North Atlantic High on Caribbean rainfall. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(2), 143–147. https://doi.org/10.1016/S1464-1909(00)00231-8 González-Herrera, F. J. (2013). Modelización estadística de eventos extremos de oleaje y nivel del mar. Universidad de las Palmas de Gran Canaria. Griffies, S. M., Schmidt, M., & Herzfeld, M. (2010). Elements of mom4p1. In GFDL Ocean Group Technical Report No. 6 (Vol. 6). Retrieved from http://gfdl.noaa.gov/cms-filesystem-action/model$%5C_$development/ocean/mom-guide4p1.pdf Griffies, S. M. (2012). Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Technical Report No. 7, 3(C), 1–631. Retrieved from http://mom-ocean.org/web/docs/project/MOM5%5C_elements.pdf$%5C$npapers3: Grimm, A. M., & Tedeschi, R. G. (2009). ENSO and Extreme Rainfall Events in South America. Journal of Climate, 22(7), 1589–1609. https://doi.org/10.1175/2008JCLI2429.1 Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V, Brönnimann, S., Charabi, Y. A.-R., … Zhai, P. (2013). Observations: Atmosphere and Surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159–254). https://doi.org/10.1017/CBO9781107415324.008 Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676–679. Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic oscillation. In J. W. Hurrell, Y. Kushnir, G. Ottersen, & M. Visbeck (Eds.), The North Atlantic Oscillation Climatic Significance and Environmental Impact (pp. 1–35). Washington, DC: Wiley Online Library. Ibañez, A. (2011). Análisis estad\’{\i}stico de valores extremos y aplicaciones. 102. IDEAM. (2006). Pronóstico Pleamares y Bajamares Costa Caribe Colombiana 2007. IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley, Eds.). Cambridge, UK, and New York, NY, USA: Cambridge University Press. IPCC. (2013). Annex III: Glossary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1447–1466). IPCC. (2013). CAMBIO CLIMÁTICO 2013 Bases f\’{\i}sicas Resumen para responsables de pol\’{\i}ticas Cambio Climático 2013 Bases f\’{\i}sicas. Contribución Del Grupo de Trabajo I Al Quinto Informe de Evaluación Del Grupo Intergubermental de Expertos Sobre El Cambio Climático - Resumen Para Responsables de Pol\’{\i}ticas. Jones, P. D., Trenberth, K. E., Ambenje, P., Bojariu, R., Easterling, D., Klein, T., … Soden, B. (2007). Observations: surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, … H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 235–336). United Kingdom and New York, NY, USA.: Cambridge University Press, Cambridge. Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., & Candela, J. (2012). Seasonal and Interannual Modulation of the Eddy Kinetic Energy in the Caribbean Sea. Journal of Physical Oceanography, 42(11), 2041–2055. https://doi.org/10.1175/JPO-D-12-048.1 Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., Debreu, L., & Lemarié, F. (2008). The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model. Ocean Modelling, 23(3–4), 82–101. https://doi.org/10.1016/j.ocemod.2008.04.002 Kenyon, J., & Hegerl, G. C. (2008). Influence of Modes of Climate Variability on Global Temperature Extremes. Journal of Climate, 21(15), 3872–3889. https://doi.org/10.1175/2008JCLI2125.1 Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., … Fiorino, M. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 Kuleshov, Y., Qi, L., Fawcett, R., & Jones, D. (2008). On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophysical Research Letters, 35(14). https://doi.org/10.1029/2007GL032983 Letetrel, C., Marcos, M., Martín Míguez, B., & Woppelmann, G. (2010). Sea level extremes in Marseille (NW Mediterranean) during 1885-2008. Continental Shelf Research, 30(12), 1267–1274. https://doi.org/10.1016/j.csr.2010.04.003 Losada, I. J., Reguero, B. G., Méndez, F. J., Castanedo, S., Abascal, a. J., & Mínguez, R. (2013). Long-term changes in sea-level components in Latin America and the Caribbean. Global and Planetary Change, 104, 34–50. https://doi.org/10.1016/j.gloplacha.2013.02.006 Maldonado, T., Rutgersson, A., Amador, J., Alfaro, E., & Claremar, B. (2016). Variability of the Caribbean low-level jet during boreal winter: Large-scale forcings. International Journal of Climatology, 36(4), 1954–1969. https://doi.org/10.1002/joc.4472 Mantua, N. J. (1999). The Pacific decadal oscillation and climate forecasting for North America. Climate Risk Solutions, 1(1), 10–13. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. Martin, E. R., & Schumacher, C. (2011). The caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. Journal of Climate, 24(22), 5935–5950. https://doi.org/10.1175/JCLI-D-11-00134.1 Masina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research: Oceans, 118(9), 3999–4016. https://doi.org/10.1002/jgrc.20313 Matthew B. Alkire, Craig Lee, Eric D’Asaro, Mary Jane Perry, Nathan Briggs, Ivona Cetinic´, and A. G. (2014). Journal of Geophysical Research : Oceans. Journal of Geophysical Research: Oceans, 119(1), 6121–6139. https://doi.org/10.1002/2014JC010105.Received Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ Acceso abierto info:eu-repo/semantics/openAccess CC-BY-ND 550 - Ciencias de la tierra 551 - Geología hidrología meteorología 986 - Colombia y Ecuador GEV extremos climáticos temperatura superficial del mar altura superficial del mar velocidad del viento ODP ENOS OAN climatic extremes Sea surfece level Sea Surface Height wind speed PDO ENSO NAO Otro info:eu-repo/semantics/other info:eu-repo/semantics/acceptedVersion 2019 ftuncolombiair https://doi.org/10.1196/annals.1446.012 https://doi.org/10.1017/CB09781107415315.026 https://doi.org/10.1007/978-1-4471-3675-0 https://doi.org/10.1002/9781118593233 https://doi.org/10.1017/CBO9781107415324.008 https://doi.org/10.1175/1520-0477(2 2023-01-29T01:04:27Z A statistical forecast of the occurrence of extreme climatic events was performed in the Colombian Caribbean Sea Basin (CMCC), through the so-called “return periods” (RP), estimated by adjusting the Generalized Extreme Value (GEV) distribution. The correlation of extreme events with the North Atlantic Oscillation (OAN), El Niño Southern Oscillation (ENOS) and the Pacific Decadal Oscillation (ODP) was estimated. Monthly series of Sea Level Height (ANM), Sea Surface Temperature (TSM) and Wind Speed (VV) for the period 1960 - 2016 were used. In each analyzed series, the RP of the 90th percentile and the 10th percentile, corresponding respectively to the thresholds of the maximum extreme values (VEmax) and the minimum extreme values (VEmin), were estimated. It was concluded that the VEmax of the ANM can be overcome in less than PR = 3 years and the VEmin have a small probability of occurrence. It was evidenced that, in the TSM, the occurrence of VEmax in the southwestern zone is expected before PR = 3 years and in the north it could be expected between PR = 4 and 5 years. It was found that for the VV the VEmax in the north and the south are expected to be exceeded at least once before PR = 9 years and in the center of the region, after PR = 20 years. The PR of VEmin in VV predominate between PR = 7 and 8 years in the eastern zone and PR = 11 years in the eastern south. The correlation of extremes with the indices of the analyzed phenomena determined that only ENSO has significant associations, presented in the VEmax of ANM and the VEmin of TSM. Se realizó en la Cuenca del Mar Caribe Colombiano (CMCC) un pronóstico estadístico de la ocurrencia de eventos extremos climáticos, a través de los llamados “periodos de retorno” (PR), estimados mediante el ajuste de la distribución de Valores Extremos Generalizada (GEV). Se estimó la correlación de los eventos extremos con la Oscilación Atlántico Norte (OAN), El Niño Oscilación del Sur (ENOS) y la Oscilación Decadal del Pacífico (ODP). Se utilizó series mensuales de la ... Text North Atlantic North Atlantic oscillation Repositorio Institucional Universidad Nacional de Colombia Del Viento ENVELOPE(-66.833,-66.833,-68.617,-68.617) Pacific Annals of the New York Academy of Sciences 1146 1 153 188