Escape to space or return to venus : ion flows measured by venus express

The present-day Venusian atmosphere is crushingly dense, extremely hot and arid. Yet, in its early history, Venus presumably had a massive amount of water, which, if spread evenly over the surface, provided a water depth of 10s to 100s of meters. Therefore, over the course of the atmospheric evoluti...

Full description

Bibliographic Details
Main Author: Persson, Moa
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Umeå universitet, Institutionen för fysik 2020
Subjects:
O+
H+
IMA
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-176014
Description
Summary:The present-day Venusian atmosphere is crushingly dense, extremely hot and arid. Yet, in its early history, Venus presumably had a massive amount of water, which, if spread evenly over the surface, provided a water depth of 10s to 100s of meters. Therefore, over the course of the atmospheric evolution, the water must have been removed from Venus. The main processes responsible for water loss can be catagorised into either diffusion into the surface materials or escape to space, where the focus of this thesis is the latter. Determining the contribution on the atmospheric evolution from each of these processes can help us understand how planetary atmospheres evolve, both here in our Solar System and in extra-solar systems, and tell us why Venus became so dry. The water escape to space is determined by several processes, where the main processes are a consequence of the interaction between the Venusian atmosphere and the solar wind. As Venus does not have an intrinsic magnetic field, its atmosphere interacts directly with the solar wind, and creates a, so called, induced magnetosphere. The interaction causes part of the solar wind energy and momentum to be transferred to the upper atmospheric particles. The additional momentum may allow the ions to reach above escape energy and escape the planet. Therefore, the interaction between the atmosphere and the solar wind is important to study to determine the rate of escape of atmospheric constituents to space. In this thesis, the escape of atmospheric constituents to space is investigated through measurements of the H+ and O+ ion flows. These ion flows were measured by the Ion Mass Analyser (IMA) on board the Venus Express spacecraft, which orbited Venus during 2006-2014. Using IMA measurements near the North Pole ionosphere, the ionospheric ion flows were shown to have a strong dusk-to-dawn component along the terminator, inside the collisional region of the atmosphere. From ion flow measurements in the magnetotail, the rate of escape of atmospheric H+ and O+ ions were ...