Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States

Climate warming can impact arctic ecosystems by altering watershed geochemistry through permafrost degradation and increased mineral weathering. This dissertation evaluated the importance of these changes in arctic Alaska by examining permafrost and soil geochemistry, mineral weathering, and changes...

Full description

Bibliographic Details
Main Author: Keller, Kate A.
Other Authors: Blum, Joel D., Kling, George W. II, Kesler, Stephen E., Zak, Donald R., Hendy, Ingrid L.
Format: Thesis
Language:English
Published: 2006
Subjects:
Online Access:https://hdl.handle.net/2027.42/79034
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/79034
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/79034 2024-01-07T09:41:15+01:00 Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States Keller, Kate A. Blum, Joel D. Kling, George W. II Kesler, Stephen E. Zak, Donald R. Hendy, Ingrid L. 2006 10718103 bytes application/pdf https://hdl.handle.net/2027.42/79034 en_US eng https://hdl.handle.net/2027.42/79034 kateak Streams Soil Climate Change Arctic Geology Thesis 2006 ftumdeepblue 2023-12-10T17:50:18Z Climate warming can impact arctic ecosystems by altering watershed geochemistry through permafrost degradation and increased mineral weathering. This dissertation evaluated the importance of these changes in arctic Alaska by examining permafrost and soil geochemistry, mineral weathering, and changes in stream geochemistry. Elemental and 87 Sr/ 86 Sr geochemistry of streams and soils, permafrost, and soil parent materials from glacial deposit surfaces of varying ages were evaluated. Carbonate content increases with soil depth across all surfaces, and exchangeable P, K, and Ca concentrations are significantly (p<0.05) greater in permafrost than in active-layer mineral soil. These results suggest that increasing thaw depth will increase carbonate alkalinity, Ca, K, and P supply to soils and streams across the region. Elemental depletion factors for a subset of these soils forming a chronosequence indicate that carbonate weathering is the dominant weathering process, and long-term weathering rates are 0.5-11 meq m -2 yr -2 . Based on increasing Ca/Na and Ca/Ba and decreasing 87 Sr/ 86 Sr with depth in soils and permafrost, elemental ratios and 87 Sr/ 86 Sr in an arctic stream were used as tracers of the maximum depth of soil water flow and therefore changes in integrated thaw depth across the watershed. From 1994 to 2004, mean 87 Sr/ 86 Sr values in low-discharge late summer stream water decreased from 0.7122 to 0.7119 (R 2 =0.62, p=0.012), and Ca/Na and Ca/Ba showed significant increasing trends that were consistent with increasing depth of soil water flowpaths. These trends provide new evidence for increasing thaw depth, despite the lack of measured increases using traditional thaw probe techniques. The effects of an in-stream thermokarst feature on stream chemistry were also investigated. Solute concentrations, alkalinity, and conductivity were elevated downstream from the thermokarst. Estimates suggest geochemical changes may be detectable downstream in rivers up to 100 times the size of the original affected ... Thesis Arctic Climate change permafrost Thermokarst Alaska University of Michigan: Deep Blue Arctic
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language English
topic Streams
Soil
Climate Change
Arctic
Geology
spellingShingle Streams
Soil
Climate Change
Arctic
Geology
Keller, Kate A.
Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States
topic_facet Streams
Soil
Climate Change
Arctic
Geology
description Climate warming can impact arctic ecosystems by altering watershed geochemistry through permafrost degradation and increased mineral weathering. This dissertation evaluated the importance of these changes in arctic Alaska by examining permafrost and soil geochemistry, mineral weathering, and changes in stream geochemistry. Elemental and 87 Sr/ 86 Sr geochemistry of streams and soils, permafrost, and soil parent materials from glacial deposit surfaces of varying ages were evaluated. Carbonate content increases with soil depth across all surfaces, and exchangeable P, K, and Ca concentrations are significantly (p<0.05) greater in permafrost than in active-layer mineral soil. These results suggest that increasing thaw depth will increase carbonate alkalinity, Ca, K, and P supply to soils and streams across the region. Elemental depletion factors for a subset of these soils forming a chronosequence indicate that carbonate weathering is the dominant weathering process, and long-term weathering rates are 0.5-11 meq m -2 yr -2 . Based on increasing Ca/Na and Ca/Ba and decreasing 87 Sr/ 86 Sr with depth in soils and permafrost, elemental ratios and 87 Sr/ 86 Sr in an arctic stream were used as tracers of the maximum depth of soil water flow and therefore changes in integrated thaw depth across the watershed. From 1994 to 2004, mean 87 Sr/ 86 Sr values in low-discharge late summer stream water decreased from 0.7122 to 0.7119 (R 2 =0.62, p=0.012), and Ca/Na and Ca/Ba showed significant increasing trends that were consistent with increasing depth of soil water flowpaths. These trends provide new evidence for increasing thaw depth, despite the lack of measured increases using traditional thaw probe techniques. The effects of an in-stream thermokarst feature on stream chemistry were also investigated. Solute concentrations, alkalinity, and conductivity were elevated downstream from the thermokarst. Estimates suggest geochemical changes may be detectable downstream in rivers up to 100 times the size of the original affected ...
author2 Blum, Joel D.
Kling, George W. II
Kesler, Stephen E.
Zak, Donald R.
Hendy, Ingrid L.
format Thesis
author Keller, Kate A.
author_facet Keller, Kate A.
author_sort Keller, Kate A.
title Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States
title_short Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States
title_full Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States
title_fullStr Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States
title_full_unstemmed Geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, Arctic Alaska, United States
title_sort geochemistry of streams, soils, and permafrost and the geochemical effects of climate change in a continuous permafrost region, arctic alaska, united states
publishDate 2006
url https://hdl.handle.net/2027.42/79034
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
permafrost
Thermokarst
Alaska
genre_facet Arctic
Climate change
permafrost
Thermokarst
Alaska
op_relation https://hdl.handle.net/2027.42/79034
kateak
_version_ 1787422076517220352