Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence

Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this...

Full description

Bibliographic Details
Main Authors: Engebretson, Mark J., Yang, Lily, Steinmetz, Erik S., Pilipenko, Vyacheslav A., Moldwin, Mark B., McCuen, Brett A., Connors, Martin G., Weygand, James M., Waters, Colin L., Nishimura, Yukitoshi, Lyons, Larry R., Russell, Christopher T.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2024
Subjects:
Online Access:https://hdl.handle.net/2027.42/191936
https://doi.org/10.1029/2023JA031643
_version_ 1835010282160652288
author Engebretson, Mark J.
Yang, Lily
Steinmetz, Erik S.
Pilipenko, Vyacheslav A.
Moldwin, Mark B.
McCuen, Brett A.
Connors, Martin G.
Weygand, James M.
Waters, Colin L.
Nishimura, Yukitoshi
Lyons, Larry R.
Russell, Christopher T.
author_facet Engebretson, Mark J.
Yang, Lily
Steinmetz, Erik S.
Pilipenko, Vyacheslav A.
Moldwin, Mark B.
McCuen, Brett A.
Connors, Martin G.
Weygand, James M.
Waters, Colin L.
Nishimura, Yukitoshi
Lyons, Larry R.
Russell, Christopher T.
author_sort Engebretson, Mark J.
collection Unknown
description Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high-speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast-coronal mass ejection driven storms.Plain Language SummaryGeomagnetically induced currents (GICs) can give rise to the most extreme space weather impact of disrupting electric power distribution. GICs can be driven by extreme geomagnetic disturbances (GMDs) that are observed as large amplitude (several hundred nT amplitude) and rapid (5–10 min period) changes in the geomagnetic field. We found that extreme high-latitude GMDs occur throughout the solar cycle, but are preferentially observed during the declining phase of the solar cycle (the several year interval just past solar maximum) and in ...
format Article in Journal/Newspaper
genre Arctic
Arctic
genre_facet Arctic
Arctic
geographic Arctic
Canada
geographic_facet Arctic
Canada
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/191936
institution Open Polar
language unknown
op_collection_id ftumdeepblue
op_relation https://hdl.handle.net/2027.42/191936
doi:10.1029/2023JA031643
Journal of Geophysical Research: Space Physics
Pulkkinen, A., Amm, O., & Viljanen, A., & BEAR Working Group. ( 2003 ). Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. Journal of Geophysical Research, 108 ( A2 ), 1053. https://doi.org/10.1029/2001JA005085
Milan, S. E., Imber, S. M., Fleetham, A. L., & Gjerloev, J. ( 2023 ). Solar cycle and solar wind dependence of the occurrence of large dB/dt events at high latitudes. Journal of Geophysical Research: Space Physics, 128 ( 4 ), e2022JA030953. https://doi.org/10.1029/2022JA030953
Molinski, T. S., Feero, W. E., & Damsky, B. L. ( 2000 ). Shielding grids from solar storms. IEEE Spectrum, 37 ( 11 ), 55 – 60. https://doi.org/10.1109/6.880955
Morley, S. K. ( 2020 ). Challenges and opportunities in magnetospheric space weather prediction. Space Weather, 18 ( 3 ), e2018SW002108. https://doi.org/10.1029/2018SW002108
Mursula, K., Qvick, T., Holappa, L., & Asikainen, T. ( 2022 ). Magnetic storms during the space age: Occurrence and relation to varying solar activity. Journal of Geophysical Research: Space Physics, 127 ( 12 ), e2022JA030830. https://doi.org/10.1029/2022JA030830
Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116 ( A12 ), A12211. https://doi.org/10.1029/2011JA016779
Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents. In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, Geophysical Monograph Series (Vol. 244, pp. 3 – 13 ). American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1
Ngwira, C. M., Sibeck, D., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB/dt variations during two geomagnetic storms. Space Weather, 16 ( 6 ), 676 – 693. https://doi.org/10.1029/2018SW001911
Nishimura, Y., Lyons, L. R., Shiokawa, K., Angelopoulos, V., Donovan, E. F., & Mende, S. B. ( 2013 ). Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs. Journal of Geophysical Research: Space Physics, 118 ( 5 ), 2034 – 2042. https://doi.org/10.1002/jgra.50279
Ohtani, S., & Gjerloev, J. W. ( 2020 ). Is the substorm current wedge an ensemble of wedgelets? Revisit to midlatitude positive bays. Journal of Geophysical Research: Space Physics, 125 ( 9 ), e2020JA027902. https://doi.org/10.1029/2020JA027902
Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16 ( 6 ), 636 – 647. https://doi.org/10.1029/2018SW001880
Pilipenko, V., Kozyreva, O., Hartinger, M., Rastaetter, L., & Sakharov, Y. ( 2023 ). Is the global MHD modeling of the magnetosphere adequate for GIC prediction: The May 27–28, 2017 storm. Cosmic Research, 61 ( 2 ), 120 – 132. https://doi.org/10.1134/s0010952522600044
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., et al. ( 2017 ). Geomagnetically induced currents: Science, engineering, and applications readiness. Space Weather, 15 ( 7 ), 828 – 856. https://doi.org/10.1002/2016SW001501
Pulkkinen, T. I., Brenner, A., Al Shidi, Q., & Toth, G. ( 2022 ). Statistics of geomagnetic storms: Global simulations perspective. Frontiers in Astronomy and Space Sciences, 9. https://doi.org/10.3389/fspas.2022.972150
Reiter, K., Guillon, S., Connors, M., & Jackel, B. ( 2021 ). Statistics of large impulsive magnetic events in the auroral zone. Journal of Space Weather and Space Climate, 11, 44. https://doi.org/10.1051/swsc/2021029
Russell, C. T., & McPherron, R. L. ( 1973 ). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78 ( 1 ), 92 – 108. https://doi.org/10.1029/JA078i001p00092
Schillings, A., Palin, L., Opgenoorth, H. J., Hamrin, M., Rosenqvist, L., Gjerloev, J. W., et al. ( 2022 ). Distribution and occurrence frequency of dB/dt spikes during magnetic storms 1980–2020. Space Weather, 20 ( 5 ), e2021SW002953. https://doi.org/10.1029/2021SW002953
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., et al. ( 2006 ). Corotating solar wind streams and recurrent geomagnetic activity: A review. Journal of Geophysical Research, 111 ( A7 ), A07S01. https://doi.org/10.1029/2005JA011273
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., & Okada, M. ( 1995 ). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Journal of Geophysical Research, 100 ( A11 ), 21733. https://doi.org/10.1029/95JA01476
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., & Alex, S. ( 2003 ). The extreme magnetic storm of 1–2 September 1859. Journal of Geophysical Research, 108 ( A7 ), 1268. https://doi.org/10.1029/2002JA009504
Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24 ( 6 ), 631 – 634. https://doi.org/10.1029/97GL00538
Viljanen, A., Pirjola, R., Prácser, E., Ahmadzai, S., & Singh, V. ( 2013 ). Geomagnetically induced currents in Europe: Characteristics based on a local power grid model. Space Weather, 11 ( 10 ), 575 – 584. https://doi.org/10.1002/swe.20098
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., et al. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116 ( A3 ), A03305. https://doi.org/10.1029/2010JA06177
Weygand, J. M., Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., et al. ( 2021 ). SECS analysis of nighttime magnetic perturbation events observed in Arctic Canada. Journal of Geophysical Research: Space Physics, 126 ( 11 ), e2021JA029839. https://doi.org/10.1029/2021JA029839
Woodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14 ( 9 ), 668 – 681. https://doi.org/10.1002/2016SW001376
Zou, Y., Dowell, C., Ferdousi, B., Lyons, L. R., & Liu, J. ( 2022 ). Auroral drivers of large dB∕dt during geomagnetic storms. Space Weather, 20 ( 11 ), e2022SW003121. https://doi.org/10.1029/2022SW003121
Al Shidi, Q., Pulkkinen, T., Toth, G., Brenner, A., Zou, S., & Gjerloev, J. ( 2022 ). A large simulation set of geomagnetic storms—Can simulations predict ground magnetometer station observations of magnetic field perturbations? Space Weather, 20 ( 11 ), e2022SW003049. https://doi.org/10.1029/2022SW003049
Borovsky, J. E., & Yakymenko, K. ( 2017 ). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2973 – 2998. https://doi.org/10.1002/2016JA023625
Boteler, D. H. ( 2001 ). Assessment of geomagnetic hazard to power systems in Canada. Natural Hazards, 23 ( 2/3 ), 101 – 120. https://doi.org/10.1023/A:1011194414259
Boteler, D. H. ( 2019 ). A 21st century view of the March 1989 magnetic storm. Space Weather, 17 ( 10 ), 1427 – 1441. https://doi.org/10.1029/2019SW002278
Boteler, D. H., & Pirjola, R. J. ( 2017 ). Modeling geomagnetically induced currents. Space Weather, 15 ( 1 ), 258 – 276. https://doi.org/10.1002/2016SW001499
Carrington, R. C. ( 1859 ). Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. https://doi.org/10.1093/mnras/20.1.13
Carter, B. A., Yizengaw, E., Pradipta, R., Halford, A. J., Norman, R., & Zhang, K. ( 2015 ). Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophysical Research Letters, 42 ( 16 ), 6554 – 6559. https://doi.org/10.1002/2015GL65060
Cliver, E. W., & Dietrich, W. F. ( 2013 ). The 1859 space weather event revisited: Limits of extreme activity. Journal of Space Weather and Space Climate, 3, 31. https://doi.org/10.1051/swsc/2013053
Connors, M. G. ( 2023 ). AUTUMNX Athabasca university THEMIS UCLA magnetometer network [Dataset]. Athabasca University, Canada. https://autumn.athabascau.ca
Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and its significance to GIC. Space Weather, 18 ( 8 ), e2020SW002497. https://doi.org/10.1029/2020SW002497
Engebretson, M. J., Ahmed, L. Y., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., et al. ( 2021b ). Superposed epoch analysis of nighttime magnetic perturbation events observed in Arctic Canada (2021). Journal of Geophysical Research: Space Physics, 126 ( 9 ), e2021JA029465. https://doi.org/10.1029/2021JA029465
Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100 ( A10 ), 19371 – 19386. https://doi.org/10.1029/95JA00768
Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124 ( 9 ), 7442 – 7458. https://doi.org/10.1029/2019JA026794
Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021a ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526
Forsyth, C., Rae, I. J., Coxon, J. C., Freeman, M. P., Jackman, C. M., Gjerloev, J., & Fazakerley, A. N. ( 2015 ). A new technique for determining substorm onsets and phases from indices of the electrojet (SOPHIE). Journal of Geophysical Research: Space Physics, 120 ( 12 ), 10592 – 10606. https://doi.org/10.1002/2015JA021343
Gannon, J. L., Swidinsky, A., & Xu, Z. (Eds.), ( 2019 ). Geomagnetically induced currents from the Sun to the power grid. Geophysical Monograph Series, (Vol. 244 ). https://doi.org/10.1002/9781119434412
Gjerloev, J. W. ( 2023 ). SuperMAG, Global magnetic field observations and products made possible by the contributors [Dataset]. SuperMAG. https://supermag.jhuapl.edu/
Hapgood, M. ( 2019 ). The Great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather, 17 ( 7 ), 950 – 975. https://doi.org/10.1029/2019SW002195
Ieda, A., Nishimura, Y., Miyashita, Y., Angelopoulos, V., Runov, A., Nagai, T., et al. ( 2016 ). Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophyical Research: Space Physics, 121 ( 5 ), 4548 – 4568. https://doi.org/10.1002/2015JA022244
Kappenman, J. G. ( 2006 ). Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events—An analysis of observational evidence including the great storm of May 1921. Advances in Space Research, 38 ( 2 ), 188 – 199. https://doi.org/10.1016/j.asr.2005.08.055
Kwagala, N., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G., et al. ( 2020 ). Validating the space weather modeling framework (SWMF) for applications in northern Europe: Ground magnetic perturbation validation. Journal of Space Weather and Space Climate, 10, 1 – 13. https://doi.org/10.1051/swsc/2020034
op_rights IndexNoFollow
publishDate 2024
publisher Wiley Periodicals, Inc.
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/191936 2025-06-15T14:17:46+00:00 Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence Engebretson, Mark J. Yang, Lily Steinmetz, Erik S. Pilipenko, Vyacheslav A. Moldwin, Mark B. McCuen, Brett A. Connors, Martin G. Weygand, James M. Waters, Colin L. Nishimura, Yukitoshi Lyons, Larry R. Russell, Christopher T. 2024-01 application/pdf https://hdl.handle.net/2027.42/191936 https://doi.org/10.1029/2023JA031643 unknown Wiley Periodicals, Inc. American Geophysical Union https://hdl.handle.net/2027.42/191936 doi:10.1029/2023JA031643 Journal of Geophysical Research: Space Physics Pulkkinen, A., Amm, O., & Viljanen, A., & BEAR Working Group. ( 2003 ). Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. Journal of Geophysical Research, 108 ( A2 ), 1053. https://doi.org/10.1029/2001JA005085 Milan, S. E., Imber, S. M., Fleetham, A. L., & Gjerloev, J. ( 2023 ). Solar cycle and solar wind dependence of the occurrence of large dB/dt events at high latitudes. Journal of Geophysical Research: Space Physics, 128 ( 4 ), e2022JA030953. https://doi.org/10.1029/2022JA030953 Molinski, T. S., Feero, W. E., & Damsky, B. L. ( 2000 ). Shielding grids from solar storms. IEEE Spectrum, 37 ( 11 ), 55 – 60. https://doi.org/10.1109/6.880955 Morley, S. K. ( 2020 ). Challenges and opportunities in magnetospheric space weather prediction. Space Weather, 18 ( 3 ), e2018SW002108. https://doi.org/10.1029/2018SW002108 Mursula, K., Qvick, T., Holappa, L., & Asikainen, T. ( 2022 ). Magnetic storms during the space age: Occurrence and relation to varying solar activity. Journal of Geophysical Research: Space Physics, 127 ( 12 ), e2022JA030830. https://doi.org/10.1029/2022JA030830 Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116 ( A12 ), A12211. https://doi.org/10.1029/2011JA016779 Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents. In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, Geophysical Monograph Series (Vol. 244, pp. 3 – 13 ). American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1 Ngwira, C. M., Sibeck, D., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB/dt variations during two geomagnetic storms. Space Weather, 16 ( 6 ), 676 – 693. https://doi.org/10.1029/2018SW001911 Nishimura, Y., Lyons, L. R., Shiokawa, K., Angelopoulos, V., Donovan, E. F., & Mende, S. B. ( 2013 ). Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs. Journal of Geophysical Research: Space Physics, 118 ( 5 ), 2034 – 2042. https://doi.org/10.1002/jgra.50279 Ohtani, S., & Gjerloev, J. W. ( 2020 ). Is the substorm current wedge an ensemble of wedgelets? Revisit to midlatitude positive bays. Journal of Geophysical Research: Space Physics, 125 ( 9 ), e2020JA027902. https://doi.org/10.1029/2020JA027902 Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16 ( 6 ), 636 – 647. https://doi.org/10.1029/2018SW001880 Pilipenko, V., Kozyreva, O., Hartinger, M., Rastaetter, L., & Sakharov, Y. ( 2023 ). Is the global MHD modeling of the magnetosphere adequate for GIC prediction: The May 27–28, 2017 storm. Cosmic Research, 61 ( 2 ), 120 – 132. https://doi.org/10.1134/s0010952522600044 Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., et al. ( 2017 ). Geomagnetically induced currents: Science, engineering, and applications readiness. Space Weather, 15 ( 7 ), 828 – 856. https://doi.org/10.1002/2016SW001501 Pulkkinen, T. I., Brenner, A., Al Shidi, Q., & Toth, G. ( 2022 ). Statistics of geomagnetic storms: Global simulations perspective. Frontiers in Astronomy and Space Sciences, 9. https://doi.org/10.3389/fspas.2022.972150 Reiter, K., Guillon, S., Connors, M., & Jackel, B. ( 2021 ). Statistics of large impulsive magnetic events in the auroral zone. Journal of Space Weather and Space Climate, 11, 44. https://doi.org/10.1051/swsc/2021029 Russell, C. T., & McPherron, R. L. ( 1973 ). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78 ( 1 ), 92 – 108. https://doi.org/10.1029/JA078i001p00092 Schillings, A., Palin, L., Opgenoorth, H. J., Hamrin, M., Rosenqvist, L., Gjerloev, J. W., et al. ( 2022 ). Distribution and occurrence frequency of dB/dt spikes during magnetic storms 1980–2020. Space Weather, 20 ( 5 ), e2021SW002953. https://doi.org/10.1029/2021SW002953 Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., et al. ( 2006 ). Corotating solar wind streams and recurrent geomagnetic activity: A review. Journal of Geophysical Research, 111 ( A7 ), A07S01. https://doi.org/10.1029/2005JA011273 Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., & Okada, M. ( 1995 ). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Journal of Geophysical Research, 100 ( A11 ), 21733. https://doi.org/10.1029/95JA01476 Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., & Alex, S. ( 2003 ). The extreme magnetic storm of 1–2 September 1859. Journal of Geophysical Research, 108 ( A7 ), 1268. https://doi.org/10.1029/2002JA009504 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24 ( 6 ), 631 – 634. https://doi.org/10.1029/97GL00538 Viljanen, A., Pirjola, R., Prácser, E., Ahmadzai, S., & Singh, V. ( 2013 ). Geomagnetically induced currents in Europe: Characteristics based on a local power grid model. Space Weather, 11 ( 10 ), 575 – 584. https://doi.org/10.1002/swe.20098 Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., et al. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116 ( A3 ), A03305. https://doi.org/10.1029/2010JA06177 Weygand, J. M., Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., et al. ( 2021 ). SECS analysis of nighttime magnetic perturbation events observed in Arctic Canada. Journal of Geophysical Research: Space Physics, 126 ( 11 ), e2021JA029839. https://doi.org/10.1029/2021JA029839 Woodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14 ( 9 ), 668 – 681. https://doi.org/10.1002/2016SW001376 Zou, Y., Dowell, C., Ferdousi, B., Lyons, L. R., & Liu, J. ( 2022 ). Auroral drivers of large dB∕dt during geomagnetic storms. Space Weather, 20 ( 11 ), e2022SW003121. https://doi.org/10.1029/2022SW003121 Al Shidi, Q., Pulkkinen, T., Toth, G., Brenner, A., Zou, S., & Gjerloev, J. ( 2022 ). A large simulation set of geomagnetic storms—Can simulations predict ground magnetometer station observations of magnetic field perturbations? Space Weather, 20 ( 11 ), e2022SW003049. https://doi.org/10.1029/2022SW003049 Borovsky, J. E., & Yakymenko, K. ( 2017 ). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2973 – 2998. https://doi.org/10.1002/2016JA023625 Boteler, D. H. ( 2001 ). Assessment of geomagnetic hazard to power systems in Canada. Natural Hazards, 23 ( 2/3 ), 101 – 120. https://doi.org/10.1023/A:1011194414259 Boteler, D. H. ( 2019 ). A 21st century view of the March 1989 magnetic storm. Space Weather, 17 ( 10 ), 1427 – 1441. https://doi.org/10.1029/2019SW002278 Boteler, D. H., & Pirjola, R. J. ( 2017 ). Modeling geomagnetically induced currents. Space Weather, 15 ( 1 ), 258 – 276. https://doi.org/10.1002/2016SW001499 Carrington, R. C. ( 1859 ). Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. https://doi.org/10.1093/mnras/20.1.13 Carter, B. A., Yizengaw, E., Pradipta, R., Halford, A. J., Norman, R., & Zhang, K. ( 2015 ). Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophysical Research Letters, 42 ( 16 ), 6554 – 6559. https://doi.org/10.1002/2015GL65060 Cliver, E. W., & Dietrich, W. F. ( 2013 ). The 1859 space weather event revisited: Limits of extreme activity. Journal of Space Weather and Space Climate, 3, 31. https://doi.org/10.1051/swsc/2013053 Connors, M. G. ( 2023 ). AUTUMNX Athabasca university THEMIS UCLA magnetometer network [Dataset]. Athabasca University, Canada. https://autumn.athabascau.ca Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and its significance to GIC. Space Weather, 18 ( 8 ), e2020SW002497. https://doi.org/10.1029/2020SW002497 Engebretson, M. J., Ahmed, L. Y., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., et al. ( 2021b ). Superposed epoch analysis of nighttime magnetic perturbation events observed in Arctic Canada (2021). Journal of Geophysical Research: Space Physics, 126 ( 9 ), e2021JA029465. https://doi.org/10.1029/2021JA029465 Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100 ( A10 ), 19371 – 19386. https://doi.org/10.1029/95JA00768 Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124 ( 9 ), 7442 – 7458. https://doi.org/10.1029/2019JA026794 Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021a ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526 Forsyth, C., Rae, I. J., Coxon, J. C., Freeman, M. P., Jackman, C. M., Gjerloev, J., & Fazakerley, A. N. ( 2015 ). A new technique for determining substorm onsets and phases from indices of the electrojet (SOPHIE). Journal of Geophysical Research: Space Physics, 120 ( 12 ), 10592 – 10606. https://doi.org/10.1002/2015JA021343 Gannon, J. L., Swidinsky, A., & Xu, Z. (Eds.), ( 2019 ). Geomagnetically induced currents from the Sun to the power grid. Geophysical Monograph Series, (Vol. 244 ). https://doi.org/10.1002/9781119434412 Gjerloev, J. W. ( 2023 ). SuperMAG, Global magnetic field observations and products made possible by the contributors [Dataset]. SuperMAG. https://supermag.jhuapl.edu/ Hapgood, M. ( 2019 ). The Great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather, 17 ( 7 ), 950 – 975. https://doi.org/10.1029/2019SW002195 Ieda, A., Nishimura, Y., Miyashita, Y., Angelopoulos, V., Runov, A., Nagai, T., et al. ( 2016 ). Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophyical Research: Space Physics, 121 ( 5 ), 4548 – 4568. https://doi.org/10.1002/2015JA022244 Kappenman, J. G. ( 2006 ). Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events—An analysis of observational evidence including the great storm of May 1921. Advances in Space Research, 38 ( 2 ), 188 – 199. https://doi.org/10.1016/j.asr.2005.08.055 Kwagala, N., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G., et al. ( 2020 ). Validating the space weather modeling framework (SWMF) for applications in northern Europe: Ground magnetic perturbation validation. Journal of Space Weather and Space Climate, 10, 1 – 13. https://doi.org/10.1051/swsc/2020034 IndexNoFollow geomagnetic storms geomagnetic disturbances magnetic perturbation events geomagnetically induced currents GIC substorms Astronomy and Astrophysics Space Sciences and Engineering Engineering Science Article 2024 ftumdeepblue 2025-06-04T05:59:18Z Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high-speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast-coronal mass ejection driven storms.Plain Language SummaryGeomagnetically induced currents (GICs) can give rise to the most extreme space weather impact of disrupting electric power distribution. GICs can be driven by extreme geomagnetic disturbances (GMDs) that are observed as large amplitude (several hundred nT amplitude) and rapid (5–10 min period) changes in the geomagnetic field. We found that extreme high-latitude GMDs occur throughout the solar cycle, but are preferentially observed during the declining phase of the solar cycle (the several year interval just past solar maximum) and in ... Article in Journal/Newspaper Arctic Arctic Unknown Arctic Canada
spellingShingle geomagnetic storms
geomagnetic disturbances
magnetic perturbation events
geomagnetically induced currents
GIC
substorms
Astronomy and Astrophysics
Space Sciences and Engineering
Engineering
Science
Engebretson, Mark J.
Yang, Lily
Steinmetz, Erik S.
Pilipenko, Vyacheslav A.
Moldwin, Mark B.
McCuen, Brett A.
Connors, Martin G.
Weygand, James M.
Waters, Colin L.
Nishimura, Yukitoshi
Lyons, Larry R.
Russell, Christopher T.
Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence
title Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence
title_full Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence
title_fullStr Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence
title_full_unstemmed Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence
title_short Extreme Geomagnetic Disturbances (GMDs) Observed in Eastern Arctic Canada: Occurrence Characteristics and Solar Cycle Dependence
title_sort extreme geomagnetic disturbances (gmds) observed in eastern arctic canada: occurrence characteristics and solar cycle dependence
topic geomagnetic storms
geomagnetic disturbances
magnetic perturbation events
geomagnetically induced currents
GIC
substorms
Astronomy and Astrophysics
Space Sciences and Engineering
Engineering
Science
topic_facet geomagnetic storms
geomagnetic disturbances
magnetic perturbation events
geomagnetically induced currents
GIC
substorms
Astronomy and Astrophysics
Space Sciences and Engineering
Engineering
Science
url https://hdl.handle.net/2027.42/191936
https://doi.org/10.1029/2023JA031643