Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene

The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to...

Full description

Bibliographic Details
Main Authors: Taylor, S. P., Patterson, M. O., Lam, A. R., Jones, H., Woodard, S. C., Habicht, M. H., Thomas, E. K., Grant, G. R.
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/172810
https://doi.org/10.1029/2021PA004395
_version_ 1835010306664824832
author Taylor, S. P.
Patterson, M. O.
Lam, A. R.
Jones, H.
Woodard, S. C.
Habicht, M. H.
Thomas, E. K.
Grant, G. R.
author_facet Taylor, S. P.
Patterson, M. O.
Lam, A. R.
Jones, H.
Woodard, S. C.
Habicht, M. H.
Thomas, E. K.
Grant, G. R.
author_sort Taylor, S. P.
collection Unknown
description The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene-Pleistocene. However, the response of the KCE during Pleistocene super-interglacials has not been examined in detail. We present a ∼2.2 Ma record of X-ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time-frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high-latitude and low-latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid-Pleistocene Climate Transition (MPT). We observe two periods of elevated ln Ca/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29-25, 15, and 11-9 and occur around recent climatic transitions, the MPT and Mid-Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.Key PointsNonlinear influences on northwest Pacific oceanic circulation during the 41-kyr worldPronounced periods of warmth during MIS 29-25, 15, 11-9 under a colder climate regimeChanges in North Pacific Subtropical Gyre correspond to extreme Arctic warming events Peer ...
format Article in Journal/Newspaper
genre Arctic
Arctic
genre_facet Arctic
Arctic
geographic Arctic
Pacific
geographic_facet Arctic
Pacific
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172810
institution Open Polar
language unknown
op_collection_id ftumdeepblue
op_doi https://doi.org/10.1029/2021PA00439510.1016/j.epsl.2016.09.04410.1029/2012PA002307
op_relation https://hdl.handle.net/2027.42/172810
doi:10.1029/2021PA004395
Paleoceanography and Paleoclimatology
Sager, W. W., Zhang, J., Korenaga, J., Sano, T., Koppers, A. A., Widdowson, M., & Mahoney, J. J. ( 2013 ). An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geoscience, 6 ( 11 ), 976 – 981.
Thomas, E. K., Clemens, S. C., Sun, Y., Prell, W. L., Huang, Y., Gao, L., et al. ( 2016 ). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters, 455, 196 – 206. https://doi.org/10.1016/j.epsl.2016.09.044
Ujiié, H., & Ujiié, Y. ( 1999 ). Late Quaternary course changes of the Kuroshio Current in the Ryukyu arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37 ( 1 ), 23 – 40.
Venti, N. L., & Billups, K. ( 2013 ). Surface water hydrography of the Kuroshio extension during the Pliocene–Pleistocene climate transition. Marine Micropaleontology, 101, 106 – 114.
Wang, B., & Zhou, X. ( 2008 ). Climate variation and prediction of rapid intensification in tropical cyclones in the Western North Pacific. Meteorology and Atmospheric Physics, 99 ( 1 ), 1 – 16.
Weltje, G. J., & Tjallingii, R. ( 2008 ). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274 ( 3–4 ), 423 – 438.
Westerhold, T., Röhl, U., & Laskar, J. ( 2012 ). Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems, 13, Q06015. https://doi.org/10.1029/2012GC004096
Yamamoto, M., Suemune, R., & Oba, T. ( 2005 ). Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters, 32, L05609. https://doi.org/10.1029/2004GL021903
Yamane, M. ( 2003 ). Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology, 48 ( 3–4 ), 205 – 223.
Yin, Q. Z., & Berger, A. ( 2012 ). Individual contribution of insolation and CO 2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38 ( 3–4 ), 709 – 724.
Yu, J., Gan, B., Jing, Z., & Wu, L. ( 2020 ). Winter extreme mixed layer depth south of the Kuroshio extension. Journal of Climate, 33 ( 24 ), 10419 – 10436.
Zachos, J. C., Kroon, D., Blum, P., & Party, S. S. ( 2004 ). Early Cenozoic extreme climates: The Walvis Ridge Transect (Vol. 208 ). Ocean Drilling Program.
Zhang, Z., Zhao, W., Qiu, B., & Tian, J. ( 2017 ). Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47 ( 6 ), 1243 – 1259.
Zhong, Y., & Liu, Z. ( 2009 ). On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean. Journal of Physical Oceanography, 39 ( 9 ), 2052 – 2076.
Abell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. ( 2021 ). Poleward and weakened westerlies during Pliocene warmth. Nature, 589, 70 – 75.
Ahn, S., Khider, D., Lisiecki, L. E., & Lawrence, C. E. ( 2017 ). A probabilistic Pliocene–Pleistocene stack of benthic δ 18 O using a profile hidden Markov model. Dynamics and Statistics of the Climate System, 2 ( 1 ), dzx002. https://doi.org/10.1093/climsys/dzx002
Andres, M., Jan, S., Sanford, T. B., Mensah, V., Centurioni, L. R., & Book, J. W. ( 2015 ). Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28 ( 4 ), 84 – 95.
Bahr, A., Lamy, F., Arz, H., Kuhlmann, H., & Wefer, G. ( 2005 ). Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214 ( 4 ), 309 – 322.
Bahr, A., Lamy, F., Arz, H. W., Major, C., Kwiecien, O., & Wefer, G. ( 2008 ). Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochemistry, Geophysics, Geosystems, 9, Q01004. https://doi.org/10.1029/2007GC001683
Balco, G., & Rovey, C. W. ( 2010 ). Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology, 38 ( 9 ), 795 – 798. https://doi.org/10.1130/G30946.1
Bialik, O. M., Jarochowska, E., & Grossowicz, M. ( 2021 ). Ordination analysis in sedimentology, geochemistry and palaeoenvironment—Background, current trends and recommendations. The Depositional Record, 7 ( 3 ), 541 – 563.
Bind off, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 477 – 587 ).
Bralower, T. J., Premoli Silva, I., & Malone, M. J. ( 2002 ). Leg 198. In Proceedings of the Ocean Drilling Program. 198 Scientific Results (Vol. 198, p. 148 ).
Chen, C., Beardsley, R. C., & Limeburner, R. ( 1992 ). The structure of the Kuroshio southwest of Kyushu: Velocity, transport and potential vorticity fields. Deep Sea Research Part A. Oceanographic Research Papers, 39 ( 2 ), 245 – 268.
Chen, J., Chen, Y., Liu, L., Ji, J., Balsam, W., Sun, Y., & Lu, H. ( 2006 ). Zr/Rb ratio in the 767 Chinese loess sequences and its implication for changes in the East Asian winter monsoon 768 strength. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1471 – 1482.
da Silva, A. M., Young, C. C., & Levitus, S. ( 1994 ). Atlas of surface marine data 1994, Vol. 1: Algorithms and procedures. Noaa Atlas Nesdis, 6 ( 83 ), 20910 – 23282.
Dutkiewicz, A., Müller, R. D., O’Callaghan, S., & Jónasson, H. ( 2015 ). Census of seafloor sediments in the world’s ocean. Geology, 43 ( 9 ), 795 – 798.
Evans, H. F., Channell, J. E., & Sager, W. W. ( 2005 ). Late Miocene–Holocene magnetic polarity stratigraphy and astrochronology, ODP Leg 198, Shatsky Rise. Proceedings of the Ocean Drilling Program Scientific Results, 198, 1 – 39.
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., & Ravelo, A. C. ( 2013 ). Patterns and mechanisms of early Pliocene warmth. Nature, 496 ( 7443 ), 43 – 49.
Frankignoul, C., & Sennéchael, N. ( 2007 ). Observed influence of North Pacific SST anomalies on the atmospheric circulation. Journal of Climate, 20 ( 3 ), 592 – 606.
Gruetzner, J., & Higgins, S. M. ( 2010 ). Threshold behavior of millennial scale variability in deep water hydrography inferred from a 1.1 Ma long record of sediment provenance at the southern Gardar Drift. Paleoceanography, 25, PA4204. https://doi.org/10.1029/2009PA001873
Habicht, M. H. ( 2019 ). Middle to Late Pleistocene Paleoenvironmental Reconstructions from Lake El’gygytgyn, Arctic Russia (Doctoral dissertation). University of Massachusetts Libraries.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. ( 2001 ). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 ( 1 ), 9.
Haug, G. H., Sigman, D. M., Tiedemann, R., Pederson, T., & Sarnthein, M. ( 1999 ). A biogenic silica record of the onset of halocline stratification on in the subpolar North Pacific 2.73 Ma. Nature, 401, 779 – 782.
Heslop, D., Dekkers, M. J., & Langereis, C. G. ( 2002 ). Timing and structure of the mid Pleistocene transition: Records from the loess deposits of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 185 ( 1–2 ), 133 – 143.
Hoiles, P. W., Gallagher, S. J., Kitamura, A., & Southwood, J. M. ( 2012 ). The evolution of the Tsushima Current during the early Pleistocene in the Sea of Japan: An example from Marine Isotope Stage (MIS) 47. Global and Planetary Change, 92, 162 – 178.
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., et al. ( 2015 ). Pacific Western boundary currents and their roles in climate. Nature, 522 ( 7556 ), 299 – 308.
Huybers, P., & Moar, P. ( 2007 ). Tropical cooling and the onset of North American glaciation. Climate of the Past, 3 ( 3 ), 549 – 557.
Imawaki, S., Bower, A. S., Beal, L., & Qiu, B. ( 2013 ). Western boundary currents. International Geophysics, 103, 305 – 338.
Jaccard, S. L., Haug, G. H., Sigman, D. M., Pedersen, T. F., Thierstein, H. R., & Röhl, U. ( 2005 ). Glacial/interglacial changes in subarctic North Pacific stratification. Science, 308 ( 5724 ), 1003 – 1006.
Jacobi, R. D., & Hayes, D. E. ( 1989 ). Sedimentary effects of interplay between the Kuroshio Extension and Pacific plate motion. Geological Society of America Bulletin, 101 ( 4 ), 549 – 560.
Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., & Cheng, X. ( 2000 ). Holocene variability of the Kuroshio Current in the Okinawa trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184 ( 1 ), 305 – 319.
Kawahata, H., & Ohshima, H. ( 2002 ). Small latitudinal shift in the Kuroshio extension (central Pacific) during glacial times: Evidence from pollen transport. Quaternary Science Reviews, 21 ( 14–15 ), 1705 – 1717.
Kawahata, H., & Ohshima, H. ( 2004 ). Vegetation and environmental record in the northern East China Sea during the late Pleistocene. Global and Planetary Change, 41 ( 3–4 ), 251 – 273.
Kitamura, A., & Kimoto, K. ( 2006 ). History of the inflow of the warm Tsushima current into the sea of Japan between 3.5 and 0.8 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 236 ( 3–4 ), 355 – 366.
Kitamura, A., Matsui, H., & Oda, M. ( 1999 ). Change in the thickness of the warm Tsushima Current at the initiation of its flow into the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 152 ( 3–4 ), 305 – 318.
Kwiecien, O., Arz, H. W., Lamy, F., Plessen, B., Bahr, A., & Haug, G. H. ( 2009 ). North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quaternary Research, 71 ( 3 ), 375 – 384.
op_rights IndexNoFollow
publishDate 2022
publisher Springer
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172810 2025-06-15T14:17:48+00:00 Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene Taylor, S. P. Patterson, M. O. Lam, A. R. Jones, H. Woodard, S. C. Habicht, M. H. Thomas, E. K. Grant, G. R. 2022-05 application/pdf https://hdl.handle.net/2027.42/172810 https://doi.org/10.1029/2021PA004395 unknown Springer Wiley Periodicals, Inc. https://hdl.handle.net/2027.42/172810 doi:10.1029/2021PA004395 Paleoceanography and Paleoclimatology Sager, W. W., Zhang, J., Korenaga, J., Sano, T., Koppers, A. A., Widdowson, M., & Mahoney, J. J. ( 2013 ). An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geoscience, 6 ( 11 ), 976 – 981. Thomas, E. K., Clemens, S. C., Sun, Y., Prell, W. L., Huang, Y., Gao, L., et al. ( 2016 ). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters, 455, 196 – 206. https://doi.org/10.1016/j.epsl.2016.09.044 Ujiié, H., & Ujiié, Y. ( 1999 ). Late Quaternary course changes of the Kuroshio Current in the Ryukyu arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37 ( 1 ), 23 – 40. Venti, N. L., & Billups, K. ( 2013 ). Surface water hydrography of the Kuroshio extension during the Pliocene–Pleistocene climate transition. Marine Micropaleontology, 101, 106 – 114. Wang, B., & Zhou, X. ( 2008 ). Climate variation and prediction of rapid intensification in tropical cyclones in the Western North Pacific. Meteorology and Atmospheric Physics, 99 ( 1 ), 1 – 16. Weltje, G. J., & Tjallingii, R. ( 2008 ). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274 ( 3–4 ), 423 – 438. Westerhold, T., Röhl, U., & Laskar, J. ( 2012 ). Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems, 13, Q06015. https://doi.org/10.1029/2012GC004096 Yamamoto, M., Suemune, R., & Oba, T. ( 2005 ). Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters, 32, L05609. https://doi.org/10.1029/2004GL021903 Yamane, M. ( 2003 ). Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology, 48 ( 3–4 ), 205 – 223. Yin, Q. Z., & Berger, A. ( 2012 ). Individual contribution of insolation and CO 2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38 ( 3–4 ), 709 – 724. Yu, J., Gan, B., Jing, Z., & Wu, L. ( 2020 ). Winter extreme mixed layer depth south of the Kuroshio extension. Journal of Climate, 33 ( 24 ), 10419 – 10436. Zachos, J. C., Kroon, D., Blum, P., & Party, S. S. ( 2004 ). Early Cenozoic extreme climates: The Walvis Ridge Transect (Vol. 208 ). Ocean Drilling Program. Zhang, Z., Zhao, W., Qiu, B., & Tian, J. ( 2017 ). Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47 ( 6 ), 1243 – 1259. Zhong, Y., & Liu, Z. ( 2009 ). On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean. Journal of Physical Oceanography, 39 ( 9 ), 2052 – 2076. Abell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. ( 2021 ). Poleward and weakened westerlies during Pliocene warmth. Nature, 589, 70 – 75. Ahn, S., Khider, D., Lisiecki, L. E., & Lawrence, C. E. ( 2017 ). A probabilistic Pliocene–Pleistocene stack of benthic δ 18 O using a profile hidden Markov model. Dynamics and Statistics of the Climate System, 2 ( 1 ), dzx002. https://doi.org/10.1093/climsys/dzx002 Andres, M., Jan, S., Sanford, T. B., Mensah, V., Centurioni, L. R., & Book, J. W. ( 2015 ). Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28 ( 4 ), 84 – 95. Bahr, A., Lamy, F., Arz, H., Kuhlmann, H., & Wefer, G. ( 2005 ). Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214 ( 4 ), 309 – 322. Bahr, A., Lamy, F., Arz, H. W., Major, C., Kwiecien, O., & Wefer, G. ( 2008 ). Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochemistry, Geophysics, Geosystems, 9, Q01004. https://doi.org/10.1029/2007GC001683 Balco, G., & Rovey, C. W. ( 2010 ). Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology, 38 ( 9 ), 795 – 798. https://doi.org/10.1130/G30946.1 Bialik, O. M., Jarochowska, E., & Grossowicz, M. ( 2021 ). Ordination analysis in sedimentology, geochemistry and palaeoenvironment—Background, current trends and recommendations. The Depositional Record, 7 ( 3 ), 541 – 563. Bind off, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 477 – 587 ). Bralower, T. J., Premoli Silva, I., & Malone, M. J. ( 2002 ). Leg 198. In Proceedings of the Ocean Drilling Program. 198 Scientific Results (Vol. 198, p. 148 ). Chen, C., Beardsley, R. C., & Limeburner, R. ( 1992 ). The structure of the Kuroshio southwest of Kyushu: Velocity, transport and potential vorticity fields. Deep Sea Research Part A. Oceanographic Research Papers, 39 ( 2 ), 245 – 268. Chen, J., Chen, Y., Liu, L., Ji, J., Balsam, W., Sun, Y., & Lu, H. ( 2006 ). Zr/Rb ratio in the 767 Chinese loess sequences and its implication for changes in the East Asian winter monsoon 768 strength. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1471 – 1482. da Silva, A. M., Young, C. C., & Levitus, S. ( 1994 ). Atlas of surface marine data 1994, Vol. 1: Algorithms and procedures. Noaa Atlas Nesdis, 6 ( 83 ), 20910 – 23282. Dutkiewicz, A., Müller, R. D., O’Callaghan, S., & Jónasson, H. ( 2015 ). Census of seafloor sediments in the world’s ocean. Geology, 43 ( 9 ), 795 – 798. Evans, H. F., Channell, J. E., & Sager, W. W. ( 2005 ). Late Miocene–Holocene magnetic polarity stratigraphy and astrochronology, ODP Leg 198, Shatsky Rise. Proceedings of the Ocean Drilling Program Scientific Results, 198, 1 – 39. Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., & Ravelo, A. C. ( 2013 ). Patterns and mechanisms of early Pliocene warmth. Nature, 496 ( 7443 ), 43 – 49. Frankignoul, C., & Sennéchael, N. ( 2007 ). Observed influence of North Pacific SST anomalies on the atmospheric circulation. Journal of Climate, 20 ( 3 ), 592 – 606. Gruetzner, J., & Higgins, S. M. ( 2010 ). Threshold behavior of millennial scale variability in deep water hydrography inferred from a 1.1 Ma long record of sediment provenance at the southern Gardar Drift. Paleoceanography, 25, PA4204. https://doi.org/10.1029/2009PA001873 Habicht, M. H. ( 2019 ). Middle to Late Pleistocene Paleoenvironmental Reconstructions from Lake El’gygytgyn, Arctic Russia (Doctoral dissertation). University of Massachusetts Libraries. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. ( 2001 ). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 ( 1 ), 9. Haug, G. H., Sigman, D. M., Tiedemann, R., Pederson, T., & Sarnthein, M. ( 1999 ). A biogenic silica record of the onset of halocline stratification on in the subpolar North Pacific 2.73 Ma. Nature, 401, 779 – 782. Heslop, D., Dekkers, M. J., & Langereis, C. G. ( 2002 ). Timing and structure of the mid Pleistocene transition: Records from the loess deposits of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 185 ( 1–2 ), 133 – 143. Hoiles, P. W., Gallagher, S. J., Kitamura, A., & Southwood, J. M. ( 2012 ). The evolution of the Tsushima Current during the early Pleistocene in the Sea of Japan: An example from Marine Isotope Stage (MIS) 47. Global and Planetary Change, 92, 162 – 178. Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., et al. ( 2015 ). Pacific Western boundary currents and their roles in climate. Nature, 522 ( 7556 ), 299 – 308. Huybers, P., & Moar, P. ( 2007 ). Tropical cooling and the onset of North American glaciation. Climate of the Past, 3 ( 3 ), 549 – 557. Imawaki, S., Bower, A. S., Beal, L., & Qiu, B. ( 2013 ). Western boundary currents. International Geophysics, 103, 305 – 338. Jaccard, S. L., Haug, G. H., Sigman, D. M., Pedersen, T. F., Thierstein, H. R., & Röhl, U. ( 2005 ). Glacial/interglacial changes in subarctic North Pacific stratification. Science, 308 ( 5724 ), 1003 – 1006. Jacobi, R. D., & Hayes, D. E. ( 1989 ). Sedimentary effects of interplay between the Kuroshio Extension and Pacific plate motion. Geological Society of America Bulletin, 101 ( 4 ), 549 – 560. Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., & Cheng, X. ( 2000 ). Holocene variability of the Kuroshio Current in the Okinawa trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184 ( 1 ), 305 – 319. Kawahata, H., & Ohshima, H. ( 2002 ). Small latitudinal shift in the Kuroshio extension (central Pacific) during glacial times: Evidence from pollen transport. Quaternary Science Reviews, 21 ( 14–15 ), 1705 – 1717. Kawahata, H., & Ohshima, H. ( 2004 ). Vegetation and environmental record in the northern East China Sea during the late Pleistocene. Global and Planetary Change, 41 ( 3–4 ), 251 – 273. Kitamura, A., & Kimoto, K. ( 2006 ). History of the inflow of the warm Tsushima current into the sea of Japan between 3.5 and 0.8 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 236 ( 3–4 ), 355 – 366. Kitamura, A., Matsui, H., & Oda, M. ( 1999 ). Change in the thickness of the warm Tsushima Current at the initiation of its flow into the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 152 ( 3–4 ), 305 – 318. Kwiecien, O., Arz, H. W., Lamy, F., Plessen, B., Bahr, A., & Haug, G. H. ( 2009 ). North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quaternary Research, 71 ( 3 ), 375 – 384. IndexNoFollow mid-Pleistocene climate transition Pleistocene western boundary current super-interglacial heterodyne X-ray fluorescence Geological Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1029/2021PA00439510.1016/j.epsl.2016.09.04410.1029/2012PA002307 2025-06-04T05:59:18Z The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene-Pleistocene. However, the response of the KCE during Pleistocene super-interglacials has not been examined in detail. We present a ∼2.2 Ma record of X-ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time-frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high-latitude and low-latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid-Pleistocene Climate Transition (MPT). We observe two periods of elevated ln Ca/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29-25, 15, and 11-9 and occur around recent climatic transitions, the MPT and Mid-Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.Key PointsNonlinear influences on northwest Pacific oceanic circulation during the 41-kyr worldPronounced periods of warmth during MIS 29-25, 15, 11-9 under a colder climate regimeChanges in North Pacific Subtropical Gyre correspond to extreme Arctic warming events Peer ... Article in Journal/Newspaper Arctic Arctic Unknown Arctic Pacific
spellingShingle mid-Pleistocene climate transition
Pleistocene
western boundary current
super-interglacial
heterodyne
X-ray fluorescence
Geological Sciences
Science
Taylor, S. P.
Patterson, M. O.
Lam, A. R.
Jones, H.
Woodard, S. C.
Habicht, M. H.
Thomas, E. K.
Grant, G. R.
Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_full Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_fullStr Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_full_unstemmed Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_short Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_sort expanded north pacific subtropical gyre and heterodyne expression during the mid-pleistocene
topic mid-Pleistocene climate transition
Pleistocene
western boundary current
super-interglacial
heterodyne
X-ray fluorescence
Geological Sciences
Science
topic_facet mid-Pleistocene climate transition
Pleistocene
western boundary current
super-interglacial
heterodyne
X-ray fluorescence
Geological Sciences
Science
url https://hdl.handle.net/2027.42/172810
https://doi.org/10.1029/2021PA004395