Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene

The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to...

Full description

Bibliographic Details
Main Authors: Taylor, S. P., Patterson, M. O., Lam, A. R., Jones, H., Woodard, S. C., Habicht, M. H., Thomas, E. K., Grant, G. R.
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/172810
https://doi.org/10.1029/2021PA004395
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172810
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic mid-Pleistocene climate transition
Pleistocene
western boundary current
super-interglacial
heterodyne
X-ray fluorescence
Geological Sciences
Science
spellingShingle mid-Pleistocene climate transition
Pleistocene
western boundary current
super-interglacial
heterodyne
X-ray fluorescence
Geological Sciences
Science
Taylor, S. P.
Patterson, M. O.
Lam, A. R.
Jones, H.
Woodard, S. C.
Habicht, M. H.
Thomas, E. K.
Grant, G. R.
Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
topic_facet mid-Pleistocene climate transition
Pleistocene
western boundary current
super-interglacial
heterodyne
X-ray fluorescence
Geological Sciences
Science
description The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene-Pleistocene. However, the response of the KCE during Pleistocene super-interglacials has not been examined in detail. We present a ∼2.2 Ma record of X-ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time-frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high-latitude and low-latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid-Pleistocene Climate Transition (MPT). We observe two periods of elevated ln Ca/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29-25, 15, and 11-9 and occur around recent climatic transitions, the MPT and Mid-Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.Key PointsNonlinear influences on northwest Pacific oceanic circulation during the 41-kyr worldPronounced periods of warmth during MIS 29-25, 15, 11-9 under a colder climate regimeChanges in North Pacific Subtropical Gyre correspond to extreme Arctic warming events Peer ...
format Article in Journal/Newspaper
author Taylor, S. P.
Patterson, M. O.
Lam, A. R.
Jones, H.
Woodard, S. C.
Habicht, M. H.
Thomas, E. K.
Grant, G. R.
author_facet Taylor, S. P.
Patterson, M. O.
Lam, A. R.
Jones, H.
Woodard, S. C.
Habicht, M. H.
Thomas, E. K.
Grant, G. R.
author_sort Taylor, S. P.
title Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_short Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_full Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_fullStr Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_full_unstemmed Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene
title_sort expanded north pacific subtropical gyre and heterodyne expression during the mid-pleistocene
publisher Springer
publishDate 2022
url https://hdl.handle.net/2027.42/172810
https://doi.org/10.1029/2021PA004395
geographic Arctic
Pacific
geographic_facet Arctic
Pacific
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_relation Taylor, S. P.; Patterson, M. O.; Lam, A. R.; Jones, H.; Woodard, S. C.; Habicht, M. H.; Thomas, E. K.; Grant, G. R. (2022). "Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene." Paleoceanography and Paleoclimatology 37(5): n/a-n/a.
2572-4517
2572-4525
https://hdl.handle.net/2027.42/172810
doi:10.1029/2021PA004395
Paleoceanography and Paleoclimatology
Sager, W. W., Zhang, J., Korenaga, J., Sano, T., Koppers, A. A., Widdowson, M., & Mahoney, J. J. ( 2013 ). An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geoscience, 6 ( 11 ), 976 – 981.
Thomas, E. K., Clemens, S. C., Sun, Y., Prell, W. L., Huang, Y., Gao, L., et al. ( 2016 ). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters, 455, 196 – 206. https://doi.org/10.1016/j.epsl.2016.09.044
Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. ( 2007 ). Influence of the water content on X- ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8, Q02004. https://doi.org/10.1029/2006GC001393
Tjallingii, R., Stattegger, K., Wetzel, A., & Van Phach, P. ( 2010 ). Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quaternary Science Reviews, 29 ( 11–12 ), 1432 – 1444.
Ujiié, H. ( 2003 ). A 370-ka paleoceanographic record from the Hess rise, central north Pacific Ocean, and an indistinct ‘Kuroshio extension’. Marine Micropaleontology, 49, 21 – 47.
Ujiié, H., & Ujiié, Y. ( 1999 ). Late Quaternary course changes of the Kuroshio Current in the Ryukyu arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37 ( 1 ), 23 – 40.
Van Hoang, L., Clift, P. D., Schwab, A. M., Huuse, M., Nguyen, D. A., & Zhen, S. ( 2010 ). Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications, 342 ( 1 ), 219 – 244.
Venti, N. L., & Billups, K. ( 2013 ). Surface water hydrography of the Kuroshio extension during the Pliocene–Pleistocene climate transition. Marine Micropaleontology, 101, 106 – 114.
Venti, N. L., Billups, K., & Herbert, T. D. ( 2013 ). Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing. Earth and Planetary Science Letters, 384, 121 – 131.
Venti, N. L., Billups, K., & Herbert, T. D. ( 2017 ). Paleoproductivity in the northwestern Pacific Ocean during the Pliocene-Pleistocene climate transition (3.0–1.8 Ma). Paleoceanography, 32, 92 – 103. https://doi.org/10.1002/2016PA002955
Venti, N. L., Leckie, R. M., & Evans, H. F. ( 2006 ). Revised late Neogene mid-latitude planktic foraminiferal biostratigraphy for the northwest Pacific (Shatsky Rise), ODP Leg 198. In AGU Fall Meeting Abstracts (Vol. 2006, pp. PP23B-1750 ).
Wang, B., & Zhou, X. ( 2008 ). Climate variation and prediction of rapid intensification in tropical cyclones in the Western North Pacific. Meteorology and Atmospheric Physics, 99 ( 1 ), 1 – 16.
Wang, P., Tian, J., Cheng, X., Liu, C., & Xu, J. ( 2003 ). Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31 ( 3 ), 239 – 242.
Wang, X., Wei, H., Taheri, M., Khormali, F., Danukalova, G., & Chen, F. ( 2016 ). Early Pleistocene climate in Western arid central Asia inferred from loess-palaeosol sequences. Scientific Reports, 6 ( 1 ), 20560.
Weedon, G. P. ( 2003 ). Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles. Cambridge University Press.
Weltje, G. J., & Tjallingii, R. ( 2008 ). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274 ( 3–4 ), 423 – 438.
Westerhold, T., Röhl, U., & Laskar, J. ( 2012 ). Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems, 13, Q06015. https://doi.org/10.1029/2012GC004096
Westerhold, T., Röhl, U., McCarren, H. K., & Zachos, J. C. ( 2009 ). Latest on the absolute age of the Paleocene-Eocene thermal maximum (PETM): New insights from exact stratigraphic position of key ash layers +19 and −17. Earth and Planetary Science Letters, 287 ( 3–4 ), 412 – 419.
Wu, L., Wilson, D. J., Wang, R., Yin, X., Chen, Z., Xiao, W., & Huang, M. ( 2020 ). Evaluating Zr/Rb ratio from XRF scanning as an indicator of grain-size variations of glaciomarine sediments in the Southern Ocean. Geochemistry, Geophysics, Geosystems, 21, e2020GC009350. https://doi.org/10.1029/2020GC009350
Yamamoto, M., Suemune, R., & Oba, T. ( 2005 ). Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters, 32, L05609. https://doi.org/10.1029/2004GL021903
Yamane, M. ( 2003 ). Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology, 48 ( 3–4 ), 205 – 223.
Yang, S., Ding, F., & Ding, Z. ( 2006 ). Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 70 ( 7 ), 1695 – 1709.
Yin, Q. ( 2013 ). Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 494 ( 7436 ), 222 – 225.
Yin, Q. Z., & Berger, A. ( 2012 ). Individual contribution of insolation and CO 2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38 ( 3–4 ), 709 – 724.
Yu, J., Gan, B., Jing, Z., & Wu, L. ( 2020 ). Winter extreme mixed layer depth south of the Kuroshio extension. Journal of Climate, 33 ( 24 ), 10419 – 10436.
Zachos, J. C., Kroon, D., Blum, P., & Party, S. S. ( 2004 ). Early Cenozoic extreme climates: The Walvis Ridge Transect (Vol. 208 ). Ocean Drilling Program.
Zhang, Y., Wallace, J. M., & Battisti, D. S. ( 1997 ). ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10 ( 5 ), 1004 – 1020.
Zhang, Z., Zhao, W., Qiu, B., & Tian, J. ( 2017 ). Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47 ( 6 ), 1243 – 1259.
Zhao, W., Tarasov, P. E., Lozhkin, A. V., Anderson, P. M., Andreev, A. A., Korzun, J. A., et al. ( 2018 ). High-latitude vegetation and climate changes during the Mid-Pleistocene Transition inferred from a palynological record from Lake El’gygytgyn, NE Russian Arctic. Boreas, 47 ( 1 ), 137 – 149.
Zhong, Y., & Liu, Z. ( 2009 ). On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean. Journal of Physical Oceanography, 39 ( 9 ), 2052 – 2076.
Caballero-Gill, R. P., Herbert, T. D., & Dowsett, H. J. ( 2019 ). 100-kyr paced climate change in the Pliocene warm period, southwest Pacific. Paleoceanography and Paleoclimatology, 34, 524 – 545. https://doi.org/10.1029/2018PA003496
Abell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. ( 2021 ). Poleward and weakened westerlies during Pliocene warmth. Nature, 589, 70 – 75.
Ahagon, N., Tanaka, Y., & Ujiie´, H. ( 1993 ). Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Marine Micropaleontology, 22 ( 3 ), 255 – 273.
Ahn, S., Khider, D., Lisiecki, L. E., & Lawrence, C. E. ( 2017 ). A probabilistic Pliocene–Pleistocene stack of benthic δ 18 O using a profile hidden Markov model. Dynamics and Statistics of the Climate System, 2 ( 1 ), dzx002. https://doi.org/10.1093/climsys/dzx002
Andres, M., Jan, S., Sanford, T. B., Mensah, V., Centurioni, L. R., & Book, J. W. ( 2015 ). Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28 ( 4 ), 84 – 95.
Arz, H. W., Pätzold, J., & Wefer, G. ( 1998 ). Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research, 50 ( 2 ), 157 – 166.
Bahr, A., Jiménez-Espejo, F. J., Kolasinac, N., Grunert, P., Hernández-Molina, F. J., Röhl, U., et al. ( 2014 ). Deciphering bottom current velocity and paleoclimate signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr: An inorganic geochemical approach. Geochemistry, Geophysics, Geosystems, 15, 3145 – 3160. https://doi.org/10.1002/2014GC005356
Bahr, A., Lamy, F., Arz, H., Kuhlmann, H., & Wefer, G. ( 2005 ). Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214 ( 4 ), 309 – 322.
Bahr, A., Lamy, F., Arz, H. W., Major, C., Kwiecien, O., & Wefer, G. ( 2008 ). Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochemistry, Geophysics, Geosystems, 9, Q01004. https://doi.org/10.1029/2007GC001683
Balco, G., & Rovey, C. W. ( 2010 ). Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology, 38 ( 9 ), 795 – 798. https://doi.org/10.1130/G30946.1
Berg, S., Wagner, B., White, D. A., & Melles, M. ( 2010 ). No significant ice-sheet expansion beyond present ice margins during the past 4500 yr at Rauer Group, East Antarctica. Quaternary Research, 74 ( 1 ), 23 – 25.
Bialik, O. M., Jarochowska, E., & Grossowicz, M. ( 2021 ). Ordination analysis in sedimentology, geochemistry and palaeoenvironment—Background, current trends and recommendations. The Depositional Record, 7 ( 3 ), 541 – 563.
Bind off, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 477 – 587 ).
Bourget, J., Zaragosi, S., Garlan, T., Gabelotaud, I., Guyomard, P., Dennielou, B., et al. ( 2008 ). Discovery of a giant deep-sea valley in the Indian ocean, off eastern Africa: The Tanzania channel. Marine Geology, 255 ( 3–4 ), 179 – 185.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021PA00439510.1016/j.epsl.2016.09.04410.1002/2014GC00535610.1038/nclimate274310.1029/2020GC00924810.1594/PANGAEA.71678210.1029/2007GC00193810.1016/j.epsl.2020.11665010.1029/2012PA00230710.1002/2015PA00285010.1029/2007GC00171310.60
_version_ 1774713608694923264
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172810 2023-08-20T04:03:12+02:00 Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene Taylor, S. P. Patterson, M. O. Lam, A. R. Jones, H. Woodard, S. C. Habicht, M. H. Thomas, E. K. Grant, G. R. 2022-05 application/pdf https://hdl.handle.net/2027.42/172810 https://doi.org/10.1029/2021PA004395 unknown Springer Wiley Periodicals, Inc. Taylor, S. P.; Patterson, M. O.; Lam, A. R.; Jones, H.; Woodard, S. C.; Habicht, M. H.; Thomas, E. K.; Grant, G. R. (2022). "Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene." Paleoceanography and Paleoclimatology 37(5): n/a-n/a. 2572-4517 2572-4525 https://hdl.handle.net/2027.42/172810 doi:10.1029/2021PA004395 Paleoceanography and Paleoclimatology Sager, W. W., Zhang, J., Korenaga, J., Sano, T., Koppers, A. A., Widdowson, M., & Mahoney, J. J. ( 2013 ). An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geoscience, 6 ( 11 ), 976 – 981. Thomas, E. K., Clemens, S. C., Sun, Y., Prell, W. L., Huang, Y., Gao, L., et al. ( 2016 ). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters, 455, 196 – 206. https://doi.org/10.1016/j.epsl.2016.09.044 Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. ( 2007 ). Influence of the water content on X- ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8, Q02004. https://doi.org/10.1029/2006GC001393 Tjallingii, R., Stattegger, K., Wetzel, A., & Van Phach, P. ( 2010 ). Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quaternary Science Reviews, 29 ( 11–12 ), 1432 – 1444. Ujiié, H. ( 2003 ). A 370-ka paleoceanographic record from the Hess rise, central north Pacific Ocean, and an indistinct ‘Kuroshio extension’. Marine Micropaleontology, 49, 21 – 47. Ujiié, H., & Ujiié, Y. ( 1999 ). Late Quaternary course changes of the Kuroshio Current in the Ryukyu arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37 ( 1 ), 23 – 40. Van Hoang, L., Clift, P. D., Schwab, A. M., Huuse, M., Nguyen, D. A., & Zhen, S. ( 2010 ). Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications, 342 ( 1 ), 219 – 244. Venti, N. L., & Billups, K. ( 2013 ). Surface water hydrography of the Kuroshio extension during the Pliocene–Pleistocene climate transition. Marine Micropaleontology, 101, 106 – 114. Venti, N. L., Billups, K., & Herbert, T. D. ( 2013 ). Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing. Earth and Planetary Science Letters, 384, 121 – 131. Venti, N. L., Billups, K., & Herbert, T. D. ( 2017 ). Paleoproductivity in the northwestern Pacific Ocean during the Pliocene-Pleistocene climate transition (3.0–1.8 Ma). Paleoceanography, 32, 92 – 103. https://doi.org/10.1002/2016PA002955 Venti, N. L., Leckie, R. M., & Evans, H. F. ( 2006 ). Revised late Neogene mid-latitude planktic foraminiferal biostratigraphy for the northwest Pacific (Shatsky Rise), ODP Leg 198. In AGU Fall Meeting Abstracts (Vol. 2006, pp. PP23B-1750 ). Wang, B., & Zhou, X. ( 2008 ). Climate variation and prediction of rapid intensification in tropical cyclones in the Western North Pacific. Meteorology and Atmospheric Physics, 99 ( 1 ), 1 – 16. Wang, P., Tian, J., Cheng, X., Liu, C., & Xu, J. ( 2003 ). Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31 ( 3 ), 239 – 242. Wang, X., Wei, H., Taheri, M., Khormali, F., Danukalova, G., & Chen, F. ( 2016 ). Early Pleistocene climate in Western arid central Asia inferred from loess-palaeosol sequences. Scientific Reports, 6 ( 1 ), 20560. Weedon, G. P. ( 2003 ). Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles. Cambridge University Press. Weltje, G. J., & Tjallingii, R. ( 2008 ). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274 ( 3–4 ), 423 – 438. Westerhold, T., Röhl, U., & Laskar, J. ( 2012 ). Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems, 13, Q06015. https://doi.org/10.1029/2012GC004096 Westerhold, T., Röhl, U., McCarren, H. K., & Zachos, J. C. ( 2009 ). Latest on the absolute age of the Paleocene-Eocene thermal maximum (PETM): New insights from exact stratigraphic position of key ash layers +19 and −17. Earth and Planetary Science Letters, 287 ( 3–4 ), 412 – 419. Wu, L., Wilson, D. J., Wang, R., Yin, X., Chen, Z., Xiao, W., & Huang, M. ( 2020 ). Evaluating Zr/Rb ratio from XRF scanning as an indicator of grain-size variations of glaciomarine sediments in the Southern Ocean. Geochemistry, Geophysics, Geosystems, 21, e2020GC009350. https://doi.org/10.1029/2020GC009350 Yamamoto, M., Suemune, R., & Oba, T. ( 2005 ). Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters, 32, L05609. https://doi.org/10.1029/2004GL021903 Yamane, M. ( 2003 ). Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology, 48 ( 3–4 ), 205 – 223. Yang, S., Ding, F., & Ding, Z. ( 2006 ). Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 70 ( 7 ), 1695 – 1709. Yin, Q. ( 2013 ). Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 494 ( 7436 ), 222 – 225. Yin, Q. Z., & Berger, A. ( 2012 ). Individual contribution of insolation and CO 2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38 ( 3–4 ), 709 – 724. Yu, J., Gan, B., Jing, Z., & Wu, L. ( 2020 ). Winter extreme mixed layer depth south of the Kuroshio extension. Journal of Climate, 33 ( 24 ), 10419 – 10436. Zachos, J. C., Kroon, D., Blum, P., & Party, S. S. ( 2004 ). Early Cenozoic extreme climates: The Walvis Ridge Transect (Vol. 208 ). Ocean Drilling Program. Zhang, Y., Wallace, J. M., & Battisti, D. S. ( 1997 ). ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10 ( 5 ), 1004 – 1020. Zhang, Z., Zhao, W., Qiu, B., & Tian, J. ( 2017 ). Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47 ( 6 ), 1243 – 1259. Zhao, W., Tarasov, P. E., Lozhkin, A. V., Anderson, P. M., Andreev, A. A., Korzun, J. A., et al. ( 2018 ). High-latitude vegetation and climate changes during the Mid-Pleistocene Transition inferred from a palynological record from Lake El’gygytgyn, NE Russian Arctic. Boreas, 47 ( 1 ), 137 – 149. Zhong, Y., & Liu, Z. ( 2009 ). On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean. Journal of Physical Oceanography, 39 ( 9 ), 2052 – 2076. Caballero-Gill, R. P., Herbert, T. D., & Dowsett, H. J. ( 2019 ). 100-kyr paced climate change in the Pliocene warm period, southwest Pacific. Paleoceanography and Paleoclimatology, 34, 524 – 545. https://doi.org/10.1029/2018PA003496 Abell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. ( 2021 ). Poleward and weakened westerlies during Pliocene warmth. Nature, 589, 70 – 75. Ahagon, N., Tanaka, Y., & Ujiie´, H. ( 1993 ). Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Marine Micropaleontology, 22 ( 3 ), 255 – 273. Ahn, S., Khider, D., Lisiecki, L. E., & Lawrence, C. E. ( 2017 ). A probabilistic Pliocene–Pleistocene stack of benthic δ 18 O using a profile hidden Markov model. Dynamics and Statistics of the Climate System, 2 ( 1 ), dzx002. https://doi.org/10.1093/climsys/dzx002 Andres, M., Jan, S., Sanford, T. B., Mensah, V., Centurioni, L. R., & Book, J. W. ( 2015 ). Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28 ( 4 ), 84 – 95. Arz, H. W., Pätzold, J., & Wefer, G. ( 1998 ). Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research, 50 ( 2 ), 157 – 166. Bahr, A., Jiménez-Espejo, F. J., Kolasinac, N., Grunert, P., Hernández-Molina, F. J., Röhl, U., et al. ( 2014 ). Deciphering bottom current velocity and paleoclimate signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr: An inorganic geochemical approach. Geochemistry, Geophysics, Geosystems, 15, 3145 – 3160. https://doi.org/10.1002/2014GC005356 Bahr, A., Lamy, F., Arz, H., Kuhlmann, H., & Wefer, G. ( 2005 ). Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214 ( 4 ), 309 – 322. Bahr, A., Lamy, F., Arz, H. W., Major, C., Kwiecien, O., & Wefer, G. ( 2008 ). Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochemistry, Geophysics, Geosystems, 9, Q01004. https://doi.org/10.1029/2007GC001683 Balco, G., & Rovey, C. W. ( 2010 ). Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology, 38 ( 9 ), 795 – 798. https://doi.org/10.1130/G30946.1 Berg, S., Wagner, B., White, D. A., & Melles, M. ( 2010 ). No significant ice-sheet expansion beyond present ice margins during the past 4500 yr at Rauer Group, East Antarctica. Quaternary Research, 74 ( 1 ), 23 – 25. Bialik, O. M., Jarochowska, E., & Grossowicz, M. ( 2021 ). Ordination analysis in sedimentology, geochemistry and palaeoenvironment—Background, current trends and recommendations. The Depositional Record, 7 ( 3 ), 541 – 563. Bind off, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 477 – 587 ). Bourget, J., Zaragosi, S., Garlan, T., Gabelotaud, I., Guyomard, P., Dennielou, B., et al. ( 2008 ). Discovery of a giant deep-sea valley in the Indian ocean, off eastern Africa: The Tanzania channel. Marine Geology, 255 ( 3–4 ), 179 – 185. IndexNoFollow mid-Pleistocene climate transition Pleistocene western boundary current super-interglacial heterodyne X-ray fluorescence Geological Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1029/2021PA00439510.1016/j.epsl.2016.09.04410.1002/2014GC00535610.1038/nclimate274310.1029/2020GC00924810.1594/PANGAEA.71678210.1029/2007GC00193810.1016/j.epsl.2020.11665010.1029/2012PA00230710.1002/2015PA00285010.1029/2007GC00171310.60 2023-07-31T20:54:09Z The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene-Pleistocene. However, the response of the KCE during Pleistocene super-interglacials has not been examined in detail. We present a ∼2.2 Ma record of X-ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time-frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high-latitude and low-latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid-Pleistocene Climate Transition (MPT). We observe two periods of elevated ln Ca/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29-25, 15, and 11-9 and occur around recent climatic transitions, the MPT and Mid-Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.Key PointsNonlinear influences on northwest Pacific oceanic circulation during the 41-kyr worldPronounced periods of warmth during MIS 29-25, 15, 11-9 under a colder climate regimeChanges in North Pacific Subtropical Gyre correspond to extreme Arctic warming events Peer ... Article in Journal/Newspaper Arctic Arctic University of Michigan: Deep Blue Arctic Pacific