Future Arctic temperature change resulting from a range of aerosol emissions scenarios

The Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly o...

Full description

Bibliographic Details
Published in:Earth's Future
Main Authors: Wobus, Cameron, Flanner, Mark, Sarofim, Marcus C., Moura, Maria Cecilia P., Smith, Steven J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2016
Subjects:
Online Access:https://hdl.handle.net/2027.42/133610
https://doi.org/10.1002/2016EF000361
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/133610
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Black carbon
Short‐lived climate forcers
Climate policy
Arctic climate
Geological Sciences
Science
spellingShingle Black carbon
Short‐lived climate forcers
Climate policy
Arctic climate
Geological Sciences
Science
Wobus, Cameron
Flanner, Mark
Sarofim, Marcus C.
Moura, Maria Cecilia P.
Smith, Steven J.
Future Arctic temperature change resulting from a range of aerosol emissions scenarios
topic_facet Black carbon
Short‐lived climate forcers
Climate policy
Arctic climate
Geological Sciences
Science
description The Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present‐day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present‐day emissions from the domestic and transportation sectors generate the majority of present‐day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long‐term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short‐term, aerosol‐induced Arctic warming. A properly phased approach that targets BC‐rich emissions from the transportation sector as well as the domestic sectors in key regions—while simultaneously working toward longer‐term goals of CO2 mitigation—could potentially avoid some amount of short‐term Arctic warming.Key PointsReductions in anthropogenic black carbon emissions alone could slow Arctic warming by mid‐centuryArctic cooling from reduced BC is more than offset by warming from reduced SO2 across all of the RCP mitigation scenariosDomestic and transport emissions from Asia hold the greatest potential for reducing Arctic warming from anthropogenic aerosols Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/133610/1/eft2124_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/133610/2/eft2124.pdf
format Article in Journal/Newspaper
author Wobus, Cameron
Flanner, Mark
Sarofim, Marcus C.
Moura, Maria Cecilia P.
Smith, Steven J.
author_facet Wobus, Cameron
Flanner, Mark
Sarofim, Marcus C.
Moura, Maria Cecilia P.
Smith, Steven J.
author_sort Wobus, Cameron
title Future Arctic temperature change resulting from a range of aerosol emissions scenarios
title_short Future Arctic temperature change resulting from a range of aerosol emissions scenarios
title_full Future Arctic temperature change resulting from a range of aerosol emissions scenarios
title_fullStr Future Arctic temperature change resulting from a range of aerosol emissions scenarios
title_full_unstemmed Future Arctic temperature change resulting from a range of aerosol emissions scenarios
title_sort future arctic temperature change resulting from a range of aerosol emissions scenarios
publisher Wiley Periodicals, Inc.
publishDate 2016
url https://hdl.handle.net/2027.42/133610
https://doi.org/10.1002/2016EF000361
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
black carbon
genre_facet Arctic
Arctic
black carbon
op_relation Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J. (2016). "Future Arctic temperature change resulting from a range of aerosol emissions scenarios." Earth’s Future 4(6): 270-281.
2328-4277
https://hdl.handle.net/2027.42/133610
doi:10.1002/2016EF000361
Earth’s Future
Sand, M., T. K. Berntsen, K. von Salzen, M. G. Flanner, J. Langner, and D. G. Victor ( 2015 ), Response of arctic temperature to changes in emissions of short‐lived climate forcers, Nat. Clim. Change, 6, 286 – 289, doi:10.1038/nclimate2880.
Eckhardt, S., et al. ( 2015 ), Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi‐model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15 ( 16 ), 9413 – 9433, doi:10.5194/acp-15-9413-2015.
Flanner, M. G. ( 2013 ), Arctic climate sensitivity to local black carbon, J. Geophys. Res., 118 ( 4 ), 1840 – 1851, doi:10.1002/JGRD.50176.
Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Francis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid‐latitudes, Geophys. Res. Lett., 39 ( 6 ), L06801, doi:10.1029/2012GL051000.
Hansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. U. S. A., 101 ( 2 ), 423 – 428, doi:10.1073/pnas.2237157100.
Holland, M. M., and C. M. Bitz ( 2003 ), Polar amplification of climate change in coupled models, Clim. Dyn., 21 ( 3–4 ), 221 – 232, doi:10.1007/s00382-003-0332-6.
Jacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi:10.1029/2009JD013795.
Kim, S. H., J. Edmonds, J. Lurz, S. J. Smith, and M. Wise ( 2006 ), The ObjECTS framework for integrated assessment: hybrid modeling of transportation, Energy J., 27 ( Special Issue #2 ), 51 – 80.
Masui, T., K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, S. Ishiwatari, E. Kato, P. R. Shukla, Y. Yamagata, and M. Kainuma ( 2011 ), An emission pathway to stabilize at 6 W/m 2 of radiative forcing, Clim. Change, 59 – 76, doi:10.1007/s10584-011-0150-5.
Sarofim, M., M. Flanner, and C. Wobus ( 2013 ), Contributions of carbonaceous aerosol emissions from different regions and sectors to Arctic temperature change, presented at the Am. Geophys. Union Conf., San Francisco, Calif., Abstract A41F‐0124.
Schuur, E. A. G., et al. ( 2015 ), Climate change and the permafrost carbon feedback, Nature, 520 ( 7546 ), 171 – 179, doi:10.1038/nature14338.
Shindell, D., and G. Faluvegi ( 2009 ), Climate response to regional radiative forcing during the twentieth century, Nat. Geosci., 2, 294 – 300, doi:10.1038/ngeo473.
Shindell, D., et al. ( 2012 ), Simultaneously mitigating near‐term climate change and improving human health and food security, Science, 335 ( 6065 ), 183 – 189, doi:10.1126/science.1210026.
Smith, S. J., and A. Mizrahi ( 2013 ), Near‐term climate mitigation by short‐lived forcers, Proc. Natl. Acad. Sci. U. S. A., 110 ( 35 ), 14202 – 14206, doi:10.1073/pnas.1308470110.
Stohl, A., et al. ( 2015 ), Evaluating the climate and air quality impacts of short‐lived pollutants, Atmos. Chem. Phys., 15 ( 18 ), 10529 – 10566, doi:10.5194/acp-15-10529-2015.
Thomson, A. M., et al. ( 2011 ), RCP4.5: a pathway for stabilization of radiative forcing by 2100, Clim. Change, 109 ( 1–2 ), 77 – 94, doi:10.1007/s10584-011-0151-4.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen ( 2010 ), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10 ( 23 ), 11707 – 11735, doi:10.5194/acp-10-11707-2010.
van Vuuren, D. P., et al. ( 2011a ), The representative concentration pathways: an overview, Clim. Change, 109, 5 – 31, doi:10.1007/s10584-011-0148-z.
van Vuuren, D. P., et al. ( 2011b ), RCP2.6: exploring the possibility to keep global mean temperature change below 2°C, Clim. Change, 109, 95 – 116, doi:10.1007/s10584-011-0152-3.
Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj ( 2011 ), RCP 8.5‐A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109 ( 1–2 ), 33 – 57.
Rogelj, J., M. Schaeffe, M. Meinshausen, D. T. Shindell, W. Hare, Z. Klimont, G. J. M. Velders, M. Amann, and H. J. Schellnhuber ( 2014 ), Disentangling the effects of CO 2 and short‐lived climate forcer mitigation, in Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16325 – 16330, doi:10.1073/pnas.1415631111.
Acosta Navarro, J. C., V. Varma, I. Riipinen, Ø. Seland, A. Kirkevåg, H. Struthers, T. Iversen, H.‐C. Hansson, and A. M. L. Ekman ( 2016 ), Amplification of Arctic warming by past air pollution reductions in Europe, Nat. Geosci., 9, 277 – 281, doi:10.1038/ngeo2673.
Andreae, M. O., and P. Merlet ( 2001 ), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15 ( 4 ), 955 – 966, doi:10.1029/2000GB001382.
Arctic Monitoring and Assessment Programme ( 2015 ), Black carbon and ozone as Arctic climate forcers, vii + 116 pp., Arctic Monitoring and Assessment Programme, Oslo, Norway.
Bond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 118, 5380 – 5552, doi:10.1002/JGRD.50171.
Browse, J., K. S. Carslaw, A. Schmidt, and J. J. Corbett ( 2013 ), Impact of future Arctic shipping on high‐latitude black carbon deposition, Geophys. Res. Lett., 40 ( 16 ), 4459 – 4463, doi:10.1002/GRL.50876.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. J. Coakley, J. E. Hansen, and D. J. Hofmann ( 1992 ), Climate forcing by anthropogenic aerosols, Science, 255 ( 5043 ), 423 – 430, doi:10.1126/science.255.5043.423.
Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West ( 2013 ), Global and regional temperature‐change potentials for near‐term climate forcers, Atmos. Chem. Phys., 13 ( 5 ), 2471 – 2485, doi:10.5194/acp-13-2471-2013.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016EF00036110.1038/nclimate288010.5194/acp-15-9413-201510.1002/JGRD.5017610.1029/2006JD00800310.1029/2012GL05100010.1073/pnas.223715710010.1007/s00382-003-0332-610.1029/2009JD01379510.1007/s10584-011-0150-510.1038/nature1433810.10
container_title Earth's Future
container_volume 4
container_issue 6
container_start_page 270
op_container_end_page 281
_version_ 1774713533039116288
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/133610 2023-08-20T04:03:05+02:00 Future Arctic temperature change resulting from a range of aerosol emissions scenarios Wobus, Cameron Flanner, Mark Sarofim, Marcus C. Moura, Maria Cecilia P. Smith, Steven J. 2016-06 application/pdf https://hdl.handle.net/2027.42/133610 https://doi.org/10.1002/2016EF000361 unknown Wiley Periodicals, Inc. Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J. (2016). "Future Arctic temperature change resulting from a range of aerosol emissions scenarios." Earth’s Future 4(6): 270-281. 2328-4277 https://hdl.handle.net/2027.42/133610 doi:10.1002/2016EF000361 Earth’s Future Sand, M., T. K. Berntsen, K. von Salzen, M. G. Flanner, J. Langner, and D. G. Victor ( 2015 ), Response of arctic temperature to changes in emissions of short‐lived climate forcers, Nat. Clim. Change, 6, 286 – 289, doi:10.1038/nclimate2880. Eckhardt, S., et al. ( 2015 ), Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi‐model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15 ( 16 ), 9413 – 9433, doi:10.5194/acp-15-9413-2015. Flanner, M. G. ( 2013 ), Arctic climate sensitivity to local black carbon, J. Geophys. Res., 118 ( 4 ), 1840 – 1851, doi:10.1002/JGRD.50176. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003. Francis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid‐latitudes, Geophys. Res. Lett., 39 ( 6 ), L06801, doi:10.1029/2012GL051000. Hansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. U. S. A., 101 ( 2 ), 423 – 428, doi:10.1073/pnas.2237157100. Holland, M. M., and C. M. Bitz ( 2003 ), Polar amplification of climate change in coupled models, Clim. Dyn., 21 ( 3–4 ), 221 – 232, doi:10.1007/s00382-003-0332-6. Jacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi:10.1029/2009JD013795. Kim, S. H., J. Edmonds, J. Lurz, S. J. Smith, and M. Wise ( 2006 ), The ObjECTS framework for integrated assessment: hybrid modeling of transportation, Energy J., 27 ( Special Issue #2 ), 51 – 80. Masui, T., K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, S. Ishiwatari, E. Kato, P. R. Shukla, Y. Yamagata, and M. Kainuma ( 2011 ), An emission pathway to stabilize at 6 W/m 2 of radiative forcing, Clim. Change, 59 – 76, doi:10.1007/s10584-011-0150-5. Sarofim, M., M. Flanner, and C. Wobus ( 2013 ), Contributions of carbonaceous aerosol emissions from different regions and sectors to Arctic temperature change, presented at the Am. Geophys. Union Conf., San Francisco, Calif., Abstract A41F‐0124. Schuur, E. A. G., et al. ( 2015 ), Climate change and the permafrost carbon feedback, Nature, 520 ( 7546 ), 171 – 179, doi:10.1038/nature14338. Shindell, D., and G. Faluvegi ( 2009 ), Climate response to regional radiative forcing during the twentieth century, Nat. Geosci., 2, 294 – 300, doi:10.1038/ngeo473. Shindell, D., et al. ( 2012 ), Simultaneously mitigating near‐term climate change and improving human health and food security, Science, 335 ( 6065 ), 183 – 189, doi:10.1126/science.1210026. Smith, S. J., and A. Mizrahi ( 2013 ), Near‐term climate mitigation by short‐lived forcers, Proc. Natl. Acad. Sci. U. S. A., 110 ( 35 ), 14202 – 14206, doi:10.1073/pnas.1308470110. Stohl, A., et al. ( 2015 ), Evaluating the climate and air quality impacts of short‐lived pollutants, Atmos. Chem. Phys., 15 ( 18 ), 10529 – 10566, doi:10.5194/acp-15-10529-2015. Thomson, A. M., et al. ( 2011 ), RCP4.5: a pathway for stabilization of radiative forcing by 2100, Clim. Change, 109 ( 1–2 ), 77 – 94, doi:10.1007/s10584-011-0151-4. van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen ( 2010 ), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10 ( 23 ), 11707 – 11735, doi:10.5194/acp-10-11707-2010. van Vuuren, D. P., et al. ( 2011a ), The representative concentration pathways: an overview, Clim. Change, 109, 5 – 31, doi:10.1007/s10584-011-0148-z. van Vuuren, D. P., et al. ( 2011b ), RCP2.6: exploring the possibility to keep global mean temperature change below 2°C, Clim. Change, 109, 95 – 116, doi:10.1007/s10584-011-0152-3. Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj ( 2011 ), RCP 8.5‐A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109 ( 1–2 ), 33 – 57. Rogelj, J., M. Schaeffe, M. Meinshausen, D. T. Shindell, W. Hare, Z. Klimont, G. J. M. Velders, M. Amann, and H. J. Schellnhuber ( 2014 ), Disentangling the effects of CO 2 and short‐lived climate forcer mitigation, in Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16325 – 16330, doi:10.1073/pnas.1415631111. Acosta Navarro, J. C., V. Varma, I. Riipinen, Ø. Seland, A. Kirkevåg, H. Struthers, T. Iversen, H.‐C. Hansson, and A. M. L. Ekman ( 2016 ), Amplification of Arctic warming by past air pollution reductions in Europe, Nat. Geosci., 9, 277 – 281, doi:10.1038/ngeo2673. Andreae, M. O., and P. Merlet ( 2001 ), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15 ( 4 ), 955 – 966, doi:10.1029/2000GB001382. Arctic Monitoring and Assessment Programme ( 2015 ), Black carbon and ozone as Arctic climate forcers, vii + 116 pp., Arctic Monitoring and Assessment Programme, Oslo, Norway. Bond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 118, 5380 – 5552, doi:10.1002/JGRD.50171. Browse, J., K. S. Carslaw, A. Schmidt, and J. J. Corbett ( 2013 ), Impact of future Arctic shipping on high‐latitude black carbon deposition, Geophys. Res. Lett., 40 ( 16 ), 4459 – 4463, doi:10.1002/GRL.50876. Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. J. Coakley, J. E. Hansen, and D. J. Hofmann ( 1992 ), Climate forcing by anthropogenic aerosols, Science, 255 ( 5043 ), 423 – 430, doi:10.1126/science.255.5043.423. Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West ( 2013 ), Global and regional temperature‐change potentials for near‐term climate forcers, Atmos. Chem. Phys., 13 ( 5 ), 2471 – 2485, doi:10.5194/acp-13-2471-2013. IndexNoFollow Black carbon Short‐lived climate forcers Climate policy Arctic climate Geological Sciences Science Article 2016 ftumdeepblue https://doi.org/10.1002/2016EF00036110.1038/nclimate288010.5194/acp-15-9413-201510.1002/JGRD.5017610.1029/2006JD00800310.1029/2012GL05100010.1073/pnas.223715710010.1007/s00382-003-0332-610.1029/2009JD01379510.1007/s10584-011-0150-510.1038/nature1433810.10 2023-07-31T21:23:03Z The Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present‐day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present‐day emissions from the domestic and transportation sectors generate the majority of present‐day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long‐term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short‐term, aerosol‐induced Arctic warming. A properly phased approach that targets BC‐rich emissions from the transportation sector as well as the domestic sectors in key regions—while simultaneously working toward longer‐term goals of CO2 mitigation—could potentially avoid some amount of short‐term Arctic warming.Key PointsReductions in anthropogenic black carbon emissions alone could slow Arctic warming by mid‐centuryArctic cooling from reduced BC is more than offset by warming from reduced SO2 across all of the RCP mitigation scenariosDomestic and transport emissions from Asia hold the greatest potential for reducing Arctic warming from anthropogenic aerosols Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/133610/1/eft2124_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/133610/2/eft2124.pdf Article in Journal/Newspaper Arctic Arctic black carbon University of Michigan: Deep Blue Arctic Earth's Future 4 6 270 281