Future Arctic temperature change resulting from a range of aerosol emissions scenarios

The Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly o...

Full description

Bibliographic Details
Published in:Earth's Future
Main Authors: Wobus, Cameron, Flanner, Mark, Sarofim, Marcus C., Moura, Maria Cecilia P., Smith, Steven J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2016
Subjects:
Online Access:https://hdl.handle.net/2027.42/133610
https://doi.org/10.1002/2016EF000361
Description
Summary:The Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present‐day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present‐day emissions from the domestic and transportation sectors generate the majority of present‐day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long‐term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short‐term, aerosol‐induced Arctic warming. A properly phased approach that targets BC‐rich emissions from the transportation sector as well as the domestic sectors in key regions—while simultaneously working toward longer‐term goals of CO2 mitigation—could potentially avoid some amount of short‐term Arctic warming.Key PointsReductions in anthropogenic black carbon emissions alone could slow Arctic warming by mid‐centuryArctic cooling from reduced BC is more than offset by warming from reduced SO2 across all of the RCP mitigation scenariosDomestic and transport emissions from Asia hold the greatest potential for reducing Arctic warming from anthropogenic aerosols Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/133610/1/eft2124_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/133610/2/eft2124.pdf