The geomorphology of Antarctic submarine slopes

The Antarctic continental margin contains a diverse range of continental slope morphologies, including iceberg keel marks, gullies, channels, mass-wasting features (slides, slumps), ridges, furrows, mounds and trough mouth fans. These features vary significantly in morphology, with bedforms varying...

Full description

Bibliographic Details
Main Author: Gales, Jenny
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2013
Subjects:
Online Access:https://research.manchester.ac.uk/en/studentTheses/d117ad12-927b-44f1-bf67-d195e2fef51b
https://pure.manchester.ac.uk/ws/files/54542756/FULL_TEXT.PDF
Description
Summary:The Antarctic continental margin contains a diverse range of continental slope morphologies, including iceberg keel marks, gullies, channels, mass-wasting features (slides, slumps), ridges, furrows, mounds and trough mouth fans. These features vary significantly in morphology, with bedforms varying in size (width, amplitude and length), shelf incision, sinuosity, branching order, spatial density and cross-sectional shape. The processes which form these features and the environmental controls influencing their morphology are not well documented or well constrained. Understanding the processes operating on the Antarctic continental margin is essential for interpreting seafloor erosion patterns, continental margin evolution, slope instability and sediment core records from the continental slope and rise. Through quantitative analysis of multibeam bathymetric data along >2670 km of the outer shelf and upper-slope of high latitude continental margins, five distinct Antarctic gully types are identified. Gully morphology was found to vary with local slope character (slope geometry, gradient), regional factors (location of cross-shelf troughs, trough mouth fans and drainage basin size), sediment yield and ice-sheet history. Most gullies are likely formed by: (1) flows generated as a result of the release of subglacial meltwater from beneath an ice-sheet grounded to the shelf edge during glacial maxima; (2) turbidity currents initiated by intense iceberg scouring; or (3) small-scale mass-wasting. Erosion by cascading dense water overflow does not form the deeply incised and V-shaped gullies that occur over much of the Antarctic continental margin. A comparison of some Arctic and Antarctic gully morphologies shows that the Antarctic gullies have much deeper mean incision depths and greater shelf-incisions, suggesting that they either formed over significantly longer periods, or by a greater release of meltwater in the areas with greater gully incision depths. The first morphological analysis of the southern Weddell Sea ...