IR Spectroscopy of Planetary Regolith Analogues, Lunar Meteorites, and Apollo Soils

The main objectives of this study are to determine how various physical and chemical properties of geologic samples can be investigated by Fourier Transform InfraRed (FTIR) spectral analyses, and determine how each of these individual properties uniquely alter the mid-infrared spectrum. Of particula...

Full description

Bibliographic Details
Main Author: Martin, Dayl
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2018
Subjects:
Online Access:https://research.manchester.ac.uk/en/studentTheses/366e3992-f823-4e88-8c5c-0fcea1d25fe8
https://pure.manchester.ac.uk/ws/files/84027280/FULL_TEXT.PDF
Description
Summary:The main objectives of this study are to determine how various physical and chemical properties of geologic samples can be investigated by Fourier Transform InfraRed (FTIR) spectral analyses, and determine how each of these individual properties uniquely alter the mid-infrared spectrum. Of particular interest is how extraterrestrial samples differ (spectrally) from terrestrial samples, and how such findings can be applied to current and future missions to airless planetary bodies (such as Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, and the Mercury Thermal Radiometer on BepiColombo). As such, a range of geological samples have been analysed including terrestrial rocks (anorthosite, granite, grabbro etc.), mineral standards (common rock-forming minerals), lunar meteorites (from Miller Range, Antarctica), and Apollo 14, 15, and 16 soils. A new technique to analyse such samples has been developed and implemented as part of this study: FTIR spectral imaging of unconsolidated samples (powders and soils) to obtain modal mineralogy estimates. Such estimates are comparable to QEMSCAN analyses and spot point counting of the same samples. This is particularly relevant for the non-destructive analysis of Apollo soil samples (bulk and sieved fractions). Individual spectra of polished terrestrial and extraterrestrial samples have been obtained in preparation for the creation of a spectral database. Such samples also have coupled chemical composition information via Electron Probe MicroAnalysis (EPMA). To have a spectrum and an associated chemical composition for each mineral in a database is unique compared to other spectral databases. Analyses of lunar meteorites resulted in an understanding of how shock (caused by hypervelocity impacts) alters the physical and spectral properties of lunar minerals. FTIR microscopy of individual minerals and phases in the meteorites were coupled with optical and cathodoluminescence (CL) imaging to identify the level of shock obtained by each mineral and phase. The FTIR ...