Flow of dense avalanches past obstructions

One means of preventing areas from being hit by avalanches is to divert the flow by straight or curved walls or tetrahedral or cylindrical-type structures. Thus, there arises the question how a given avalanche flow is changed regarding the diverted-flow depth and flow direction. In this paper a repo...

Full description

Bibliographic Details
Published in:Annals of Glaciology
Main Authors: Tai, Y. C., Gray, J. M N T, Hutter, K., Noelle, S.
Format: Article in Journal/Newspaper
Language:English
Published: 2001
Subjects:
Online Access:https://research.manchester.ac.uk/en/publications/ea2688a1-f146-4898-8f88-fc70e2e2cac5
https://doi.org/10.3189/172756401781819166
Description
Summary:One means of preventing areas from being hit by avalanches is to divert the flow by straight or curved walls or tetrahedral or cylindrical-type structures. Thus, there arises the question how a given avalanche flow is changed regarding the diverted-flow depth and flow direction. In this paper a report is given on laboratory experiments performed for gravity-driven dense granular flows down an inclined plane obstructed by plane wall and tetrahedral wedge. It was observed that these flows are accompanied by shocks induced by the presence of the obstacles. These give rise to a transition from super-to subcritical flow of the granular avalanche, associated with depth and velocity changes. It is demonstrated that with an appropriate shock-capturing integration technique for the Savage-Hutter theory, the shock formation for a finite-mass granular flow sliding from an inclined plane into a horizontal run-out zone is well described, as is the shock formation of the granular flow on either side of a tetrahedral protection structure.