Ecology of zooplankton communities: climate, dormancy, and benthic-pelagic coupling

This thesis describes how influences, such as top down and bottom up forces, shape zooplankton communities in shallow lakes. I have also extended the traditional food-web theory by investigating the effects of climate on total biomass, taxonomic composition, and temporal properties of zooplankton co...

Full description

Bibliographic Details
Main Author: Gyllström, Mikael
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Mikael Gyllström, Limnology, Ecology Building, S-223 62, Lund, Sweden 2003
Subjects:
Online Access:https://lup.lub.lu.se/record/466271
Description
Summary:This thesis describes how influences, such as top down and bottom up forces, shape zooplankton communities in shallow lakes. I have also extended the traditional food-web theory by investigating the effects of climate on total biomass, taxonomic composition, and temporal properties of zooplankton communities. A field experiment showed that the total biomass of both phytoplankton and zooplankton increased with nutrient enrichment. This increase was, however, lower for zooplankton and higher for phytoplankton when planktivorous fish was present, indicating cascading effects of top down forces from fish to phytoplankton. A study of 81 lakes, covering a climate gradient from Southern Spain to Northern Sweden, confirmed the role of lake productivity (total phosphorus concentration) as the most important predictor of total phytoplankton and zooplankton biomass. Moreover, macrophyte cover and climate also significantly affected total zooplankton biomass. Increased macrophyte cover led to an increase in total zooplankton biomass through its positive effect on macrophyte associated and benthic taxa. Enrichment mainly affected pelagic taxa and the main effect of enrichment was an increase in cyclopoid copepods relative to calanoid copepods and an increased proportion of Daphnia of the total cladoceran biomass. Warmer climate was associated with lower biomass of zooplankton, mainly through its negative impact on pelagic species. Enrichment and increased temperature (especially the combination of these two) also reduced the temporal stability of zooplankton communities. Zooplankters are usually considered to be short-lived, transient creatures, but their ability to produce resistant dormant stages can prolong their life span considerably and carry populations through periods during which active stages are unable to survive. Dormancy has implications for zooplankton ecology, genetic diversity and evolution of species. In a field study hatching from diapausing eggs was shown to affect seasonal succession in a cladoceran ...