Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient

Relative to vascular plants, little is known about what factors control bryophyte communities or how they respond to successional and environmental changes. Bryophytes are abundant in boreal forests, thus changes in moss community composition and functional traits (for example, moisture and nutrient...

Full description

Bibliographic Details
Published in:Ecosystems
Main Authors: Jonsson, Micael, Kardol, Paul, Gundale, Michael J., Bansal, Sheel, Nilsson, Marie-Charlotte, Metcalfe, Dan, Wardle, David A.
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2015
Subjects:
Online Access:https://lup.lub.lu.se/record/5180090
https://doi.org/10.1007/s10021-014-9819-8
Description
Summary:Relative to vascular plants, little is known about what factors control bryophyte communities or how they respond to successional and environmental changes. Bryophytes are abundant in boreal forests, thus changes in moss community composition and functional traits (for example, moisture and nutrient content; rates of photosynthesis and respiration) may have important consequences for ecosystem processes and microfaunal communities. Through synthesis of previous work and new analyses integrating new and published data from a long-term successional gradient in the boreal forest of northern Sweden, we provide a comprehensive view of the biotic factors (for example, vascular plant productivity, species composition, and diversity) and abiotic factors (for example, soil fertility and light transmission) that impact the moss community. Our results show that different aspects of the moss community (that is, composition, functional traits, moss-driven processes, and associated invertebrate fauna) respond to different sets of environmental variables, and that these are not always the same variables as those that influence the vascular plant community. Measures of moss community composition and functional traits were primarily influenced by vascular plant community composition and productivity. This suggests that successional shifts in abiotic variables, such as soil nutrient levels, indirectly affect the moss community via their influence on vascular plant community characteristics, whereas direct abiotic effects are less important. Among the moss-driven processes, moss litter decomposition and moss productivity were mainly influenced by biotic variables (notably the community characteristics of both vascular plants and mosses), whereas moss functional traits (primarily specific leaf area and tissue nutrient concentrations) also were important in explaining moss di-nitrogen-fixation rates. In contrast, both abiotic and biotic variables were important drivers of moss microfaunal community structure. Taken together, our ...