Responses to projected changes in climate and UV-B at the species level

Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and t...

Full description

Bibliographic Details
Published in:AMBIO: A Journal of the Human Environment
Main Authors: Callaghan, Terry V., Björn, Lars Olof, Chernov, Yuri, Chapin, Terry, Christensen, Torben, Huntley, Brian, Ims, Rolf A., Johansson, Margareta, Jolly, Dyanna, Jonasson, Sven, Matveyeva, Nadya, Panikov, Nicolai, Oechel, Walter, Shaver, Gus, Elster, Josef, Jónsdóttir, Ingibjörg S., Laine, Kari, Taulavuori, Kari, Taulavuori, Erja, Zöckler, Christoph
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2004
Subjects:
Online Access:https://lup.lub.lu.se/record/132528
https://doi.org/10.1579/0044-7447-33.7.418
https://portal.research.lu.se/files/4826973/624318.pdf
Description
Summary:Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO 2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have ...