Effects of Regioselectivity and Lipid Class Specificity of Lipases on Transesterification, Exemplified by Biodiesel Production

Lipase-catalyzed ethanolysis of triolein was studied as a model for biodiesel production. Four lipases were immobilized on porous polypropylene, and ethanolysis reactions were carried out in methyl t-butyl ether. The reaction products were analyzed using gas chromatography. Three of the four lipases...

Full description

Bibliographic Details
Published in:Journal of the American Oil Chemists' Society
Main Authors: Sinkuniene, Dovile, Adlercreutz, Patrick
Format: Article in Journal/Newspaper
Language:English
Published: The American Oil Chemists' Society 2014
Subjects:
Online Access:https://lup.lub.lu.se/record/4602810
https://doi.org/10.1007/s11746-014-2465-7
Description
Summary:Lipase-catalyzed ethanolysis of triolein was studied as a model for biodiesel production. Four lipases were immobilized on porous polypropylene, and ethanolysis reactions were carried out in methyl t-butyl ether. The reaction products were analyzed using gas chromatography. Three of the four lipases studied were efficient in the conversion of triolein to 2-monoolein, but slow in the final step of producing glycerol. However, Candida antarctica lipase B was slow in the conversion of triolein, but more efficient in the subsequent two steps than the other lipases. The 1,3-selectivity of the lipases was less pronounced for the monooleins than for triolein. Silica gel was investigated as a catalyst for acyl migration, showing an increase in biodiesel yield with three of the lipases, but a reduction in yield when C. antarctica lipase B was used. The highest biodiesel yield (96 %) was obtained with a combination of Rhizopus arrhizus lipase and C. antarctica lipase B.