Monitoring insect defoliation in forests with time-series of satellite based remote sensing data - near real-time methods and impact on the carbon balance

Forests are of major importance to climate change mitigation due to their strong capacity to sequester carbon. Nearly half of the terrestrial carbon is stored in forests, and forests contribute to half of the terrestrial primary productivity, with forests in the mid- and high latitude ecosystems as...

Full description

Bibliographic Details
Main Author: Olsson, Per-Ola
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Department of Physical Geography and Ecosystem Science, Lund University 2016
Subjects:
Online Access:https://lup.lub.lu.se/record/8860253
https://portal.research.lu.se/files/5455404/8861718.pdf
Description
Summary:Forests are of major importance to climate change mitigation due to their strong capacity to sequester carbon. Nearly half of the terrestrial carbon is stored in forests, and forests contribute to half of the terrestrial primary productivity, with forests in the mid- and high latitude ecosystems as major contributors. These high latitude forests are, however, projected to be strongly influenced by climate change. A warmer climate is likely to have a positive effect on forest productivity and increase the ability to absorb CO2 from the atmosphere. At the same time it is projected that a warmer climate will increase the impact of forest disturbances, such as insect outbreaks. Insect outbreaks are, however, generally excluded in large scale carbon modeling. In addition, there are large uncertainties in the quantitative effects of insect outbreaks on the carbon balance. Hence, it is important to develop methods to monitor insect disturbances and to quantify the impact of these disturbances on the carbon balance. The general aim of this thesis was to develop methods for mapping of insect outbreaks with satellite data, and to quantify the impact of these outbreaks on primary productivity. The results demonstrated that time-series of satellite data could be applied to find what year an outbreak by the invasive Hungarian spruce scale in southern Sweden started, and showed the potential of developing an early warning system. An early warning system would most likely have detected the outbreak the year before it was detected in field; for invasive species early detection is important to enable rapid counter-measures to decrease the risk that new species establish populations. The results also showed that coarse spatial resolution satellite data (MODIS 250x250 m pixels size) can be used for near real-time monitoring of insect induced defoliation with the aid of Kalman filtering and cumulative sums (CUSUM). Of the defoliated MODIS pixels in mountain birch forests in northern Sweden 74–100% were detected with a ...