Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands

Palsa mires, nutrient poor permafrost peatlands common in subarctic regions, store a significant amount of carbon (C) and it has been hypothesized their net ecosystem C balance (NECB) is sensitive to climate change. Over two years we measured the NECB for Stordalen palsa mire and found it to accumul...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Olefeldt, David, Roulet, Nigel T., Bergeron, Onil, Crill, Patrick, Backstrand, Kristina, Christensen, Torben
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union (AGU) 2012
Subjects:
Online Access:https://lup.lub.lu.se/record/2409876
https://doi.org/10.1029/2011GL050355
Description
Summary:Palsa mires, nutrient poor permafrost peatlands common in subarctic regions, store a significant amount of carbon (C) and it has been hypothesized their net ecosystem C balance (NECB) is sensitive to climate change. Over two years we measured the NECB for Stordalen palsa mire and found it to accumulate 46 g C m(-2) yr(-1). While Stordalen NECB is comparable to nutrient poor peatlands without permafrost, the component fluxes differ considerably in magnitude. Specifically, Stordalen had both lower growing season CO2 uptake and wintertime CO2 losses, but importantly also low dissolved organic carbon exports and hydrocarbon (mainly methane) emissions. Restricted C losses from palsa mires are likely to have facilitated C accumulation of unproductive subarctic permafrost peatlands. Continued climate change and permafrost thaw is likely to amplify several component fluxes, with an uncertain overall effect on NECB - highlighting the necessity for projections of high-latitude C storage to consider all C fluxes. Citation: Olefeldt, D., N. T. Roulet, O. Bergeron, P. Crill, K. Backstrand, and T. R. Christensen (2012), Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res. Lett., 39, L03501, doi:10.1029/2011GL050355.