Two estimates of the metabolic costs of antibody production in migratory shorebirds: low costs, internal reallocation, or both?

We measured the costs of mounting a humoral immune response using two novel antigens (tetanus and diphtheria) in two shorebird species (Scolopacidae): Red Knot (Calidris canutus, measured in autumn) and Ruff (Philomachus pugnax, measured in spring). Metabolic rate was measured during the preinjectio...

Full description

Bibliographic Details
Published in:Journal of Ornithology
Main Authors: Mendes, L, Piersma, T, Hasselquist, Dennis
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2006
Subjects:
Online Access:https://lup.lub.lu.se/record/159451
https://doi.org/10.1007/s10336-006-0070-8
Description
Summary:We measured the costs of mounting a humoral immune response using two novel antigens (tetanus and diphtheria) in two shorebird species (Scolopacidae): Red Knot (Calidris canutus, measured in autumn) and Ruff (Philomachus pugnax, measured in spring). Metabolic rate was measured during the preinjection phase, at the building phase of the primary immune response, and at peak secondary immune response by determining the oxygen consumption of the postabsorptive birds at rest. Confirming earlier studies, Red Knots and Ruffs responded with lower antibody titers to the diphtheria than to the tetanus antigen. Although Red Knots and Ruffs produced the same amounts of antibodies, Red Knots showed a significant 13% increase in basal metabolic rate (BMR) during the secondary antibody response, whereas Ruffs showed a 15%, but only marginally significant, reduction in BMR. The results from this study suggest that the energetic costs of an immune response may be small, but the "negative cost" in Ruffs hints at the possibility of resource reallocation and the concomitant difficulty of measuring such costs during "basal" metabolic rate measurements.