A deglacial palaeomagnetic master curve for Fennoscandia Providing a dating template and supporting millennial-scale geomagnetic field patterns for the past 14 ka

Reconstructions of palaeomagnetic secular variation (PSV) in sediment cores can be compared to well-dated regional PSV master curves to infer deposition age. The existing PSV master curve for Fennoscandia, "Fennostack" (Snowball et al., 2007), is limited to the past 10 ka. In this study, w...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Lougheed, Bryan, Nilsson, Andreas, Björck, Svante, Snowball, Ian, Muscheler, Raimund
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2014
Subjects:
PSV
Online Access:https://lup.lub.lu.se/record/5070072
https://doi.org/10.1016/j.quascirev.2014.03.008
Description
Summary:Reconstructions of palaeomagnetic secular variation (PSV) in sediment cores can be compared to well-dated regional PSV master curves to infer deposition age. The existing PSV master curve for Fennoscandia, "Fennostack" (Snowball et al., 2007), is limited to the past 10 ka. In this study, we construct a deglacial (for the interval 14-11 ka) PSV master curve for Fennoscandia by including data from a number of existing studies in the region, updating geochronologies where necessary. We also produce new deglacial PSV data from Baltic Sea long-core sediments. By selecting three suitable sites, one in southern Sweden and two in northwest Russia, we produce, for the first time, a deglacial PSV master curve for Fennoscandia, which will provide a useful alternative dating tool for deglacial time intervals, especially considering that deglacial sediments are often unsuitable for C-14 dating. Additionally, we use the deglacial PSV master curve to assess current hypotheses regarding geomagnetic field changes. Time varying geomagnetic field models constrained by Holocene PSV data from around the globe have predicted the presence of latitudinal and longitudinal patterns in the position of the north geomagnetic pole (NGP). Specifically, a 1350 year cycle in NGP latitude has been noted, along with two preferred dominant mode longitudinal bands for NGP; in Europe and North America (Korte et al., 2011; Nilsson et al., 2011). Most PSV studies of sediment are, however, limited to the Holocene epoch. By combining our deglacial PSV master curve with 'Fennostack', we are able to assess general patterns in inclination for the past 14 ka, and compare these to a general prediction of regional inclination for the last 14 ka, based on an extrapolation of the latitudinal and longitudinal NGP periodicity noted by Nilsson et al. (2011). The model prediction suggests that the Fennoscandian PSV for the past 14 ka should reveal three recurring intervals of generally steeper inclination due to a dominant NGP longitudinal band in Europe. We find ...