Soil microbial resource limitation along a subarctic ecotone from birch forest to tundra heath

Soil microorganisms regulate the decomposition of organic matter. However, microbial activities can also be rate-limited by the resource in lowest supply. Arctic ecosystems are being exposed to pronounced climate warming, with arctic greening, treeline advance and shrubification resulting in increas...

Full description

Bibliographic Details
Published in:Soil Biology and Biochemistry
Main Authors: Neurauter, Markus, Yuan, Mingyue, Hicks, Lettice, Rousk, Johannes
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2023
Subjects:
Online Access:https://lup.lub.lu.se/record/558d9396-9310-44b9-96c6-fc338278cc45
https://doi.org/10.1016/j.soilbio.2022.108919
Description
Summary:Soil microorganisms regulate the decomposition of organic matter. However, microbial activities can also be rate-limited by the resource in lowest supply. Arctic ecosystems are being exposed to pronounced climate warming, with arctic greening, treeline advance and shrubification resulting in increased plant-derived carbon (C) inputs to soils, and faster rates of decomposition releasing mineral nutrients, potentially shifting the limiting factor for microbial growth. Here we used a “space-for-time” approach across a subarctic ecotone (birch forest, tree line, shrub and tundra sites). N and P fertilization treatments were also applied in the field, to test whether changes in resource limitation could be induced through nutrient loading of soils. In these soils, we measured the responses of bacterial and fungal growth as well as soil respiration to full factorial additions of C, nitrogen (N) and phosphorus (P) (“limiting factor assays”: LFA) to infer how the limiting factor for microbial growth would be affected by future climate change. We found that bacteria were triple-limited by C, N and P, while fungi were co-limited by C and N, with no shift in the limiting factor for bacterial or fungal growth across the ecotone. However, bacterial responses to the LFA were stronger in the tundra, showing 9-fold stronger increases in response to LFA-CNP addition compared to that in the forest. In contrast, fungal responses to the LFA were stronger in the forest, showing a 120% higher growth in response to LFA-CN addition, with no detectable response to LFA-CN addition in the tundra. These contrasting results suggested competitive interactions for resources between the two decomposer groups. Fertilization in the field shifted the bacterial resource limitation, but had no effect on the limiting factor for fungal growth. Together, our findings suggest that resource limitations for soil microorganisms will not change due to future warming, but rather affect degrees of fungal-to-bacterial dominance.