Oxidation of Ketones: A (Chemo-) Enzymatic Approach Using Oxygenases and Hydrolases

Oxidation reactions are important in organic chemistry as well as in nature. In industry, oxidations are commonly used for the synthesis of chemicals and pharmaceuticals, however such processes have a number of limitations, they use chlorinated solvents, stoichiometric oxidation reagents, and in som...

Full description

Bibliographic Details
Main Author: Chávez, Georgina
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Lund University (Media-Tryck) 2013
Subjects:
Online Access:https://lup.lub.lu.se/record/3735323
https://portal.research.lu.se/files/5577413/3735601.pdf
Description
Summary:Oxidation reactions are important in organic chemistry as well as in nature. In industry, oxidations are commonly used for the synthesis of chemicals and pharmaceuticals, however such processes have a number of limitations, they use chlorinated solvents, stoichiometric oxidation reagents, and in some cases the reagents that have risks of explosion during transportation and storage. This has called for more environment-friendly alternative technologies for oxidation reactions. Baeyer-Villiger oxidation is a reaction in which a ketone is oxidized to an ester or a cyclic ketone to a lactone by treatment with peroxyacids. Lactones constitute an important group of chemicals used in flavors, fragrances, pharmaceutical intermediates and polymer building blocks. The work presented in this thesis concerns enzymes, including Baeyer-Villiger monooxygenases (BVMOs) that catalyse the Baeyer-Villiger oxidation using molecular oxygen as an oxidant, and perhydrolytic enzymes that can be used for in situ generation of peracid for oxidation of cyclic ketones. A simple colorimetric method was developed for detection of BVMO activity and was based on the formation of a purple colored product between an enolizable ketone and 3,5-dinitrobenzoic acid in an alkaline solution. The method was shown to have potential for screening of both wild type and recombinant microbial cells as well as for quantitative measurement of BVMO activity. Further, a recombinant BVMO from a strain of Dietzia was characterized. The sequence of the enzyme suggested that it is related to Ethionamide monooxygenases. The recombinant enzyme was active in whole cells and crude lysate but lost activity on purification. The enzyme was shown to have high activity towards several linear alkenes, and was also moderately active towards cyclobutanone, phenylacetone and thioanisole. Two perhydrolytic enzymes able to produce peracids from a carboxylic ester and hydrogen peroxide were studied for oxidation of cyclohexanone to caprolactone, a chemical of immense importance. ...