Under pressure: macro-ecological patterns in the benthic macrofauna in the northwest Atlantic deep sea

Deep-sea systems are understudied compared to any other ecological system on Earth, but they are important for ecosystem functioning and services. The deep sea is important in the climatic regulation of Earth, and it is a new frontier for resource provisioning for humanity. Impacts, such as increase...

Full description

Bibliographic Details
Main Author: van der Grient, J
Other Authors: Rogers, A, Kenny, A
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:https://ora.ox.ac.uk/objects/uuid:9e4f7dc5-fdb9-46d2-86d4-3b3343b7d4da
Description
Summary:Deep-sea systems are understudied compared to any other ecological system on Earth, but they are important for ecosystem functioning and services. The deep sea is important in the climatic regulation of Earth, and it is a new frontier for resource provisioning for humanity. Impacts, such as increased carbon emissions and deep-sea fishing and mining will likely influence the system, but these effects are not well understood. To recognise these impacts, common patterns in community structure need to be understood. This study aims to assess community structure in the deep sea by looking at patterns in body size and biodiversity. It uses polychaetes (bristle worms) as a study group as they are the most abundant group in the benthic macrofauna in terms of density and play key roles in the food web. Body size is an important component of the community structure, as body size is correlated with many other traits of the organism, from physiological rates (e.g. heart or breathing rates) to population dynamics (e.g. production rates or population abundances) and species richness. It is thought that body size of deep-sea (endo)benthic organisms declines with increasing depth, which is often related to food availability which itself declines with increasing depth. Many contradictory results on body-size change with increasing depth, however, have been reported, including no change, increasing, or a parabolic relationship. It is demonstrated here (Chapter 2) that there is much variety in body-size estimates between different geographic regions and taxonomic groups. These differences can ultimately influence the predictions of other traits, and might hint at what might happen in changing climatic conditions. It sets the basis to argue that there should be a focus on explaining why there are differences, instead of focusing on finding a general trend for organisms in all geographical regions. Furthermore, it is unlikely that food availability alone can explain a change in body size. An alternative explanation is offered ...