High expression of new genes in trochophore enlightening the ontogeny and evolution of trochozoans

Animals with trochophore larvae belong to Trochozoa, one of the main branches of Bilateria. In addition to exhibiting spiral cleavage and early cell fate determination, trochozoans typically undergo indirect development, which contributes to the most unique characteristics of their ontogeny. The ind...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Xu, F, Domazet-Lošo, T, Fan, D, Dunwell, T, Li, L, Fang, X, Zhang, G
Format: Article in Journal/Newspaper
Language:unknown
Published: Nature Publishing Group 2016
Subjects:
Online Access:https://doi.org/10.1038/srep34664
https://ora.ox.ac.uk/objects/uuid:9e2f311e-9d1c-4406-a857-27a9a8695d7c
Description
Summary:Animals with trochophore larvae belong to Trochozoa, one of the main branches of Bilateria. In addition to exhibiting spiral cleavage and early cell fate determination, trochozoans typically undergo indirect development, which contributes to the most unique characteristics of their ontogeny. The indirect development of trochozoans has provoked discussion regarding the origin and evolution of marine larvae and is interesting from the perspective of phylogeny-ontogeny correspondence. While these phylo-onto correlations have an hourglass shape in Deuterostomia, Ecdysozoa, plants and even fungi, they have seldom been studied in Trochozoa, and even Lophotrochozoa. Here, we compared the ontogenetic transcriptomes of the Pacific oyster, Crassostrea gigas (Bivalvia, Mollusca), the Pacific abalone, Haliotis discus hannai (Gastropoda, Mollusca), and the sand worm Perinereis aibuhitensis (Polychaeta, Annelida) using several complementary phylotranscriptomic methods to examine their evolutionary trajectories. The results revealed the late trochophore stage as the phylotypic phase. However, this basic pattern is accompanied with increased use of new genes in the trochophore stages which marks specific adaptations of the larval body plans.