TAROGE-M: radio antenna array on antarctic high mountain for detecting near-horizontal ultra-high energy air showers

Abstract The TAROGE-M radio observatory is a self-triggered antenna array on top of the ???2700 m high Mt. Melbourne in Antarctica, designed to detect impulsive geomagnetic emission from extensive air showers induced by ultra-high energy (UHE) particles beyond 1017 eV, including cosmic rays, Earth-s...

Full description

Bibliographic Details
Published in:Journal of Cosmology and Astroparticle Physics
Main Authors: Wang, Shih-Hao, Nam, Jiwoo, Shin, Bok-Kyun, TAROGE collaborations, ARIANNA collaborations
Format: Article in Journal/Newspaper
Language:unknown
Published: Institute of Physics 2022
Subjects:
Online Access:https://scholarworks.unist.ac.kr/handle/201301/62186
https://doi.org/10.1088/1475-7516/2022/11/022
Description
Summary:Abstract The TAROGE-M radio observatory is a self-triggered antenna array on top of the ???2700 m high Mt. Melbourne in Antarctica, designed to detect impulsive geomagnetic emission from extensive air showers induced by ultra-high energy (UHE) particles beyond 1017 eV, including cosmic rays, Earth-skimming tau neutrinos, and particularly, the ???ANITA anomalous events??? (AAE) from near and below the horizon. The six AAE discovered by the ANITA experiment have signal features similar to tau neutrinos but that hypothesis is in tension either with the interaction length predicted by Standard Model or with the flux limits set by other experiments. Their origin remains uncertain, requiring more experimental inputs for clarification. The detection concept of TAROGE-M takes advantage of a high altitude with synoptic view toward the horizon as an efficient signal collector, and the radio quietness as well as strong and near vertical geomagnetic field in Antarctica, enhancing the relative radio signal strength. This approach has a low energy threshold, high duty cycle, and is easy to extend for quickly enlarging statistics. Here we report experimental results from the first TAROGE-M station deployed in January 2020, corresponding to approximately one month of livetime. The station consists of six receiving antennas operating at 180-450 MHz, and can reconstruct source directions of impulsive events with an angular resolution of ???0.3??, calibrated in situ with a drone-borne pulser system. To demonstrate TAROGE-M's ability to detect UHE air showers, a search for cosmic ray signals in 25.3-days of data together with the detection simulation were conducted, resulting in seven identified candidates. The detected events have a mean reconstructed energy of 0.95-0.31+0.46 EeV and zenith angles ranging from 25?? to 82??, with both distributions agreeing with the simulations, indicating an energy threshold at about 0.3 EeV. The estimated cosmic ray flux at that energy is 1.2-0.9+0.7 ?? 10-16 eV-1 km-2 yr-1 sr-1, also consistent ...