Life history bias in endophyte infection of the Antarctic rhodophyte, Iridaea cordata

Endophytic organisms are known to have varied effects on their host organism in terrestrial and marine environments. In previous studies on marine algae, these symbioses range from innocuous to pathogenic depending on the host and endophyte species. The present study further assessed a pathogenic re...

Full description

Bibliographic Details
Published in:Botanica Marina
Main Authors: Schoenrock, Kathryn M., Amsler, Charles D., McClintock, James B., Baker, Bill J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Walter de Gruyter GmbH 2015
Subjects:
Online Access:http://eprints.gla.ac.uk/106725/
Description
Summary:Endophytic organisms are known to have varied effects on their host organism in terrestrial and marine environments. In previous studies on marine algae, these symbioses range from innocuous to pathogenic depending on the host and endophyte species. The present study further assessed a pathogenic relationship between filamentous algal endophytes and a red algal host from the western Antarctic Peninsula. We analyzed endophyte presence (appearance of filamentous thalli) in the three life history stages of Iridaea cordata and potential impacts on fertility in the fertilized female gametophytes (carposporophytes) and tetrasporophytes. We found that endophytes proliferate throughout significantly more thallus area in tetrasporophyte and unfertilized gametophyte hosts than in carposporophyte hosts, but there was no correlation between endophyte cover and fertility in these individuals. This study also provides a demographic analysis of I. cordata populations surrounding Palmer Station, Antarctica, showing that these populations are haploid dominated (∼78% of individuals). The differential presence of filamentous algal endophytes indicates that endophyte pathogenicity indirectly has greater effect on tetrasporophytes and unfertilized gametophytes than on the carposporophytes, which house the products of sexual recombination.