Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul

Este estudo tem como objetivo descrever o potencial de energia das ondas oceânicas na costa do Estado do Rio Grande do Norte, Extremo Nordeste do Brasil, com base em resultados de simulações numéricas de ondas entre os anos de 2010 a 2017. Para caracterizar o regime das ondas e avaliar o potencial d...

Full description

Bibliographic Details
Published in:Anuário do Instituto de Geociências
Main Authors: Matos, Maria de Fátima Alves de, Scudelari, Ada Cristina, Amaro, Venerando Eustáquio
Other Authors: A CAPES pela concessão das bolsas de Pesquisa do Programa Nacional de Pós-Doutorado (PNPD/CAPES), Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Norte, e o Projeto UNIVERSAL/CNPq-481386/2012-2
Format: Article in Journal/Newspaper
Language:English
Published: Universidade Federal do Rio de Janeiro 2022
Subjects:
Online Access:https://revistas.ufrj.br/index.php/aigeo/article/view/46460
https://doi.org/10.11137/1982-3908_2022_45_46460
id ftufriodejaneiro:oai:www.revistas.ufrj.br:article/46460
record_format openpolar
institution Open Polar
collection Portal de Periódicos da UFRJ (Universidade Federal do Rio de Janeiro)
op_collection_id ftufriodejaneiro
language English
topic Energia das ondas
Variabilidade sazonal
Nordeste do Brasil
spellingShingle Energia das ondas
Variabilidade sazonal
Nordeste do Brasil
Matos, Maria de Fátima Alves de
Scudelari, Ada Cristina
Amaro, Venerando Eustáquio
Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul
topic_facet Energia das ondas
Variabilidade sazonal
Nordeste do Brasil
description Este estudo tem como objetivo descrever o potencial de energia das ondas oceânicas na costa do Estado do Rio Grande do Norte, Extremo Nordeste do Brasil, com base em resultados de simulações numéricas de ondas entre os anos de 2010 a 2017. Para caracterizar o regime das ondas e avaliar o potencial de energia das ondas foram usados os modelos espectrais: WaveWatch III, este para a geração de ondas em águas offshore com saídas para as condições de contorno para o modelo de propagação das ondas; e, o modelo SWAN para as transformações e propagação das ondas geradas ao largo até a zona costeira. Testes de validação foram realizados com dados de medições in situ para ser avaliado o fluxo de energia de ondas em pontos próximos da costa. A avaliação da série temporal dos dados da simulação é apresentada quanto sua variação temporal, incluindo a variabilidade sazonal, e quanto sua distribuição espacial ao longo do domínio geográfico da modelagem. Os resultados estatísticos mostram que ao longo dos anos o potencial de energia das ondas possui variabilidade significativa entre os meses. De dezembro a março a energia das ondas são mais intensas, com valores máximos atingindo 16,7 kW/m e 25,9 kW/m, influenciadas pelas maiores alturas significativas de ondas e direções predominantes de N para NE. De junho a setembro, o comportamento do potencial de energia das ondas é reduzido a baixos níveis, 0,03 e 0,9 kW/m, com ondas provenientes de N a ENE. Em termos de distribuição espacial, o talude continental foi considerado a zona mais energética, com média de 25 kW/m durante o verão. Contudo, os resultados mostraram também que em alguns setores da plataforma continental interna, próximo da profundidade de 25 m, houve a ocorrência de valores de potencial de energia de ondas com máximos de 44 kW/m durante o verão.
author2 A CAPES pela concessão das bolsas de Pesquisa do Programa Nacional de Pós-Doutorado (PNPD/CAPES)
Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Norte
e o Projeto UNIVERSAL/CNPq-481386/2012-2
format Article in Journal/Newspaper
author Matos, Maria de Fátima Alves de
Scudelari, Ada Cristina
Amaro, Venerando Eustáquio
author_facet Matos, Maria de Fátima Alves de
Scudelari, Ada Cristina
Amaro, Venerando Eustáquio
author_sort Matos, Maria de Fátima Alves de
title Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul
title_short Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul
title_full Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul
title_fullStr Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul
title_full_unstemmed Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul
title_sort variabilidade interanual do potencial energético das ondas oceânicas na costa setentrional do rio grande do norte, atlântico equatorial sul
publisher Universidade Federal do Rio de Janeiro
publishDate 2022
url https://revistas.ufrj.br/index.php/aigeo/article/view/46460
https://doi.org/10.11137/1982-3908_2022_45_46460
long_lat ENVELOPE(-66.867,-66.867,-68.167,-68.167)
geographic Nordeste
geographic_facet Nordeste
genre Arctic
genre_facet Arctic
op_source Anuário do Instituto de Geociências; v. 45 (2022)
1982-3908
0101-9759
op_relation https://revistas.ufrj.br/index.php/aigeo/article/view/46460/pdf
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16692
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16693
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16694
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16695
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16696
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16697
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16698
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16699
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16700
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16701
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16702
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16703
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16704
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16705
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16706
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16707
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16708
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16709
Alamian, R., Shafaghat, R., Miri, S.J., Yazdanshenas, N. & Shakeri, M. 2014, 'Evaluation of technologies for harvesting wave energy in Caspian Sea', Renewable and Sustainable Energy Reviews, vol. 32, pp. 468-76. http://dx.doi.org/10.1016/j.rser.2014.01.036 Almeida, N.M., Vital, H. & Eichler, P.P.B. 2017, 'Aspectos sedimentológicos do talude continental setentrional do Rio Grande do Norte, NE do Brasil', Pesquisas em Geociências, vol. 44, no. 3, pp. 537-53. http://dx.doi.org/10.22456/1807-9806.83277 Akpinar, A. & Kömürcü, M.İ. 2012, 'Wave energy potential along the south-east coasts of the Black Sea'. Energy, vol. 42, pp. 289-302. https://doi.org/10.1016/j.energy.2012.03.057 Akpinar, A.; Van Vledder, G.P.; Kömürcü, M.İ. & Özger, M. 2012, 'Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea', Continental Shelf Research, vol. 50, no. 19, pp. 80-99. https://doi.org/10.1016/j.csr.2012.09.012 Battjes, J.A. & Janssen, J.P.F.M. 1978, 'Energy loss and set-up due to breaking of random waves', Proceedings of International Conference on Coastal Engineering, pp. 569-87. https://ascelibrary.org/doi/10.1061/9780872621909.034 Barstow, S., Mørk, G., Mollison, D. & Cruz, J. 2008, ‘The wave energy resource’, in J. Cruz (ed.), Ocean Wave Energy, Current status and future perspectives, Springer, Switzerland, pp. 93-132. Barstow, S., Mørk, G. & Lonseth, L. 2009, 'WorldWaves wave energy resource assessments from the deep ocean to the coast', Proceedings of the 8th European Wave and Tidal Energy Conference, pp. 149-59. http://www.homepages.ed.ac.uk/shs/Wave%20Energy/EWTEC%202009/EWTEC%202009%20(D)/papers/245.pdf Bernhoff, H., Sjostedt, E. & Leijon, M. 2006, 'Wave energy resources in sheltered sea areas: a case study of the Baltic Sea', Renewable Energy, vol. 31, pp. 2164-70. https://doi.org/10.1016/j.renene.2005.10.016 Beyene, A. & Wilson, J.H. 2007, 'Digital mapping of California wave energy resource', International Journal Energy Research, vol. 31, pp. 1156-68. https://doi.org/10.1002/er.1326 Booij, N., Ris, R.C. & Holthuijsen, L.H. 1999, 'A Third-generation Wave Model for Coastal Regions, Part I, Model Description and Validation', Journal of Geophysical Research, vol. 104, no. 4, pp. 7649-66. https://doi.org/10.1029/98JC02622 Carvalho, J.T. 2010, ‘Simulação da distribuição de energia das ondas oceânicas ao largo do litoral brasileiro’, PhD thesis, Instituto Nacional de Pesquisas Espaciais. http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2010/09.27.19.33/doc/publicacao.pdf Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J. & Dias, M.A.F.S. 2009, Tempo e clima no Brasil, Editora Oficina de textos, São Paulo, São Paulo. Chen, F., Lu, S.M., Tseng, K.T., Lee, S.C. & Wang, E. 2010, 'Assessment of renewable energy reserves in Taiwan', Renewable and Sustainable Energy Reviews, vol. 14, pp. 2511-28. https://doi.org/10.1016/j.rser.2010.06.021 Cornett, A.M. 2008, ‘A global wave energy resource assessment’, International Offshore and Polar Engineering Conference, Vancouver, CA, pp. 318-26. Chu, P.C., Galanis, G. & Kuo, Y.H. 2010, ‘Statistical structure of global significant wave heights’, Conference on Probability and Statistics in Atmospheric Sciences, Atlanta, USA, pp. 1-6. Czech, B. & Bauer, P. 2012, 'Wave energy converter concepts: design challenges and classification', Industrial Electronics Magazine, vol. 6, pp. 4-16. https://doi.org/10.1109/MIE.2012.2193290 Defne, Z., Haas, K.A. & Fritz, H.M. 2009, 'Wave power potential along the Atlantic coast of the southeastern USA', Renewable Energy, vol. 34, pp. 2197-205. https://doi.org/10.1016/j.renene.2009.02.019 Espindola, R.L. & Araújo, A.M. 2017, 'Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data', PLOS One, pp. 1-28. https://doi.org/10.1371/journal.pone.0183501 Falcão, A.F.O. 2010, 'Wave energy utilization: A review of the technologies', Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 899-918. https://doi.org/10.1016/j.rser.2009.11.003 Falcão, A.F.O. & Henriques, J.C.C. 2019, 'The spring-like air compressibility effect in oscillating-waters-column wave energy converters: review and analyses', Renewable and Sustainable Energy Reviews, vol. 112, pp. 483-98. https://doi.org/10.1016/j.rser.2019.04.040 Fortes, C.J.E.M., Pinheiro, L. & Palha, A. 2007, ‘O pacote de dados SOPRO: evoluções recentes’, Jornadas Portuguesas de Engenharia Costeira e Portuária, Lisboa, PT, pp. 1-10. Fortes, C.J.E.M., Pinheiro, L. & Santos, J.A. 2011, 'SOPRO 3.0 – Evolução do pacote integrado SOPRO', Vetor, vol. 21, no. 2, pp. 72-100. https://periodicos.furg.br/vetor/article/view/690 Galabov, V. 2013, ‘On the wave energy potential of the Bulgarian Black Sea Coast. Marine and Ocean Ecosystems’, Conference Proceedings of the 13th International Multidisciplinary Scientific Geo Conference, Albena, SGEM, pp. 831-38. Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F. & McGrath, R. 2016, 'The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility', Renewable Energy, vol. 88, pp. 494-516. https://doi.org/10.1016/j.renene.2015.11.010 Gunn, K. & Stock-Williams, C. 2012, 'Quantifying the global wave power', Renewable Energy, vol. 44, pp. 296-304. https://doi.org/10.1016/j.renene.2012.01.101 Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Miller, P., Olbers, D.J., Richter, K., Sell, W. & Walden, H. 1973, 'Measurements of wind wave-growth and swell decay during the Joint North Sea Wave Project (JONSWAP)', Ergnzungsheft Deutschen Hydrographischen Zeitschrift Reihe, vol. 8, no. 12, pp. 1-95. Hughes, M.G. & Heap, A.D. 2010, 'National-scale wave energy resource assessment for Australia', Renewable Energy, vol. 35, pp. 1783-91. https://doi.org/10.1016/j.renene.2009.11.001 Iglesias, G., López, M., Carballo, R., Castro, A., Fraguela, J.A. & Frigaard, P. 2009, 'Wave energy potential in Galicia (NW Spain)', Renewable Energy, vol. 34, pp. 2323-33. https://doi.org/10.1016/j.renene.2009.03.030 Iglesias, G. & Carballo, R. 2010, 'Wave energy and nearshore hot spots: The case of the SE Bay of Biscay', Renewable Energy, vol. 35, pp. 2490-500. https://doi.org/10.1016/j.renene.2010.03.016 Innocentini, V., Prado, S.C.S.C., Pereira, C.S., Arantes, F.O. & Brandão, I.N. 2001, 'Ocorrência de vagas no Arquipélago de São Pedro e São Paulo: Caso 24 de outubro de 1999', Revista Brasileira de Meteorologia, vol. 16, no. 2, pp. 177-86. <http://mtc-m16b.sid.inpe.br/col/cptec.inpe.br/walmeida/2004/11.12.11.14/doc/Luciana.pdf> Jahangir, M.H & Mazinani, M.M. 2020, 'Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea', Renewable Energy, vol. 151, no. 9, pp. 1-31. https://doi.org/10.1016/j.renene.2020.01.012 Jiang, H. & Chen, G. 2013, 'A global view on the swell and wind sea climate by the Jason-1 Mission: A revisit', Journal of Atmospheric and Oceanic Technology, vol. 30, pp. 1833-41. https://doi.org/10.1175/JTECH-D-12-00180.1 Kim, G., Jeong, W.M., Lee, K.S., Jun, K. & Lee, M.E. 2011, 'Offshore and nearshore wave energy assessment around the Korean Peninsula', Energy, vol. 36, pp. 1460-69. https://doi.org/10.1016/j.energy.2011.01.023 Kamranzad, B., Etmad-Shahidi, A. & Chegini, V. 2016, 'Sustainability of wave energy resources in southern Caspian Sea', Energy, vol. 97, pp. 549-59. https://doi.org/10.1016/j.energy.2015.11.063 Komen, G.J., Hasselmann, S. & Hasselmann, K. 1984, 'On the existence of a fully developed wind sea spectrum', Journal of Physical Oceanography, vol. 14, pp. 1271-85. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2 Kompor, W., Ekkawatpanit, C., Kositgittiwong, D. 2018, 'Assessment of ocean wave energy resource potential in Thailand', Ocean and Coastal Management, vol. 160, no. 15, pp. 64-74. https://doi.org/10.1016/j.ocecoaman.2018.04.003 Kumar, V.S., Dubhashi, K.K., Nair, T.M.B. & Singh, J. 2013, 'Wave power potential at a few shallow-water locations around Indian coast', Current Science, vol. 40, no. 9, pp. 1219-24. https://www.jstor.org/stable/24092402 Lanfredi, N.W., Pousa, J.L., Mazio, C.A. & Dragani, W.C. 1992, 'Wave-power potential along the coast of the province of Buenos Aires, Argentina', Energy, vol. 17, pp. 997-1006. https://doi.org/10.1016/0360-5442(92)90016-S Lavidas, G. & Venugopal, V. 2017, 'A 35year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea', Renewable Energy, vol. 103, pp. 401-17. https://doi.org/10.1016/j.renene.2016.11.055 Lenee-Bluhm, P., Paasch, R. & Özkan-Haller, H.T. 2011, 'Characterizing the wave energy resource of the US Pacific Northwest', Renewable Energy, vol. 36, pp. 2106-19. https://doi.org/10.1016/j.renene.2011.01.016 Liberti, L., Carillo, A. & Sannino, G. 2013, 'Wave energy resource assessment in the Mediterranean, the Italian perspective', Renewable Energy, vol. 50, pp. 938-49. https://doi.org/10.1016/j.renene.2012.08.023 Lisboa, R.C., Teixeira, P.R.F. & Fortes, C.J.E.M. 2017, 'Numerical evaluation of wave energy potential in the south of Brazil', Energy, vol. 121, pp. 176-84. https://doi.org/10.1016/j.energy.2017.01.001 López, I., Andreu, J., Ceballos, S. & Alegría, I.M. 2013, 'Review of wave energy technologies and the necessary power-equipment', Renewable and Sustainable Energy Reviews, vol. 27, pp. 413-34. https://doi.org/10.1016/j.rser.2013.07.009 Magagna, D. & Uihlein, A. 2015, JRC ocean energy status report. Technology, market and economic aspects of ocean energy in Europe, EUR 26983, viewed 2 January 2019, <https://op.europa.eu/en/publication-detail/-/publication/359b9147-ab4e-4639-b9db-17a6011a255f/language-en>. Marin, F.O. 2009, ‘A subcorrente Norte do Brasil ao largo da costa do Nordeste’, Master thesis, Universidade de São Paulo. https://teses.usp.br/teses/disponiveis/21/21132/tde-22092009-142640/pt-br.php Matos, M.F.A., Fortes, C.J.E.M., Amaro, V.E. & Scudelari, A.C. 2013, 'Comparative analysis of agitation obtained the numeric model (SWAN) in modeling Rio Grande do Norte (Brazil) northern coastal waves and field data', Revista de Gestão Costeira Integrada, vol. 13, no. 3, pp. 283-99. https://doi.org/10.5894/rgci378 Matos, M.F.A., Amaro, V.E., Fortes, C.J. & Scudelari, A.C. 2014, 'Interação entre ondas oceânicas e fundo marinho: resultados na plataforma continental setentrional do Rio Grande do Norte', Revista Brasileira de Geomorfologia, vol. 15, no. 3, pp. 371-91. https://doi.org/10.20502/rbg.v15i3.458 Mayer, D.A. & Weisberg, R.H. 1993, 'A description of COADS Surface Meteorological Fieldsand the Implied Sverdrup Transports for the Atlantic Ocean from 30°S to 60°N', Journal of Physical Oceanography, vol. 23, pp. 2201-21. https://doi.org/10.1175/1520-0485(1993)023<2201:ADOCSM>2.0.CO;2 Mørk, G., Barstow, S., Kabuth, A. & Pontes, M.T. 2010, ‘Assessing the global wave energy potential’, International Conference on Ocean, Offshore Mechanics and Arctic Engineering, 2010. Shanghai, pp. 1-8. https://doi.org/10.1115/OMAE2010-20473 Nascimento Neto, F.C., Vital, H., Araújo, I.R.F. & Gomes, M.P. 2019, 'Campo de cordões arenosos da plataforma interna setentrional do Rio Grande do Norte, adjacente a Galinhos-Guamaré, Brasil', Anuário do Instituto de Geociências, vol. 42, no. 2, pp. 50-58. https://doi.org/10.11137/2019_2_50_58 One Earth Future 2016, Ocean energy strategic roadmap. Building ocean energy for Europe, report EUR, p. 1-74 Onea, F. & Rusu, L. 2019, 'Wave power variation near the Romanian coastal waters', E3S Web of Conferences, vol. 103, pp. 1-5. https://doi.org/10.1051/e3sconf/201910301006 Pegorelli, C., Dottori, M. & Fortes, J. 2018, 'Evaluating the gravity wave energy potential off the Brazilian coast', Brazilian Journal of Oceanography, vol. 66, no. 2, pp. 220-33. http://dx.doi.org/10.1590/s1679-87592018011706602 Pessoa Neto, O.C. 2003, 'Estratigrafia de sequências da plataforma mista neogênica na Bacia Potiguar, margem equatorial Brasileira', Revista Brasileira de Geociências, vol. 33, pp. 263-78. http://ppegeo.igc.usp.br/index.php/rbg/article/view/9781/9795 Pinheiro, L.V., Fortes, C.J.E.M., Santos, J.A., Neves, M.G., Capitão, R. & Coli, A.B. 2005, ‘SOPRO. Caracterização da agitação marítima. Aplicações’, V Jornadas Portuguesas de Engenharia Costeira e Portuária, Lisboa, pp. 1-10. Pontes, M.T., Aguiar, R. & Pires, H.O. 2005, 'A nearshore wave energy atlas for Portugal', Journal of Offshore Mechanics and Arctic Engineering, vol. 127, pp. 249-55. https://doi.org/10.1115/OMAE2003-37407 Rosman, P.C.C., Neves, C.F., Muehe, D. & Valentini, E.M.S. 2007, Estudos de vulnerabilidade no Litoral do Rio de Janeiro devido às mudanças climáticas, Fundação COPPETEC-PENO, viewed 11 August 2017, http://eadterrazul.org.br/pdf/Documentos/Oficina%20de%20Planejamento%20%20SCSLJ/2%C2%AA%20dia%209.08.14%20Saneamento%20B%C3%A1sico/PENO9501_RelatorioFinal_VulerabilidadeLitoralRJ.pdf Rusu, E. & Soares, C.G. 2009, 'Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore', Renewable Energy, vol. 34, pp. 1501-16. https://doi.org/10.1016/j.renene.2008.10.027 Rusu, L. & Soares, C.G. 2012, 'Wave energy assessments in the Azores islands', Renewable Energy, vol. 45, pp. 183-96. https://doi.org/10.1016/j.renene.2012.02.027 Rusu, E. & Rusu, L. 2019, 'Evaluation of the wind power potential in the European nearshore of the Mediterranean Sea', E3S Web of Conferences, vol. 103, pp. 1-6. https://doi.org/10.1051/e3sconf/201910301003 Saket, A. & Etemad-Shahidi, A. 2012, 'Wave energy potential along the northern coast of the Gulf Oman, Iran', Renewable Energy, vol. 40, no. 1, pp. 90-7. https://doi.org/10.1016/j.renene.2011.09.024 Salcedo-Castro, J., Silva, N.P., Camargo, R., Marone, E. & Sepúlveda, H.H. 2017, 'Estimation on extreme wave heights return period from short-term interpolation of multi-mission satellite data: application to the South Atlantic', Ocean Science Discussion, vol. 81, pp. 1-17. https://doi.org/10.5194/os-14-911-2018 Santos A.J., Fortes, C.J.E.M., Pinheiro, L. & Neves, M.G. 2005, ‘A software package for wave characteristics in ports’, Proceeedings of the 12th International Conference of the International Maritime Association of the Mediterranean, Lisboa. http://repositorio.lnec.pt:8080/xmlui/handle/123456789/5592 Schott, F.A., Fischer, J. & Stramma, L. 1998, 'Transport and pathways of the Upper-layer circulation in the Western Tropical Atlantic', Journal of Physical Oceanography, vol. 28, pp. 1904-28. https://doi.org/10.1175/1520-0485(1998)028<1904:TAPOTU>2.0.CO;2 Semedo, A., Suselj, K., Rutgersson, A. & Sterl, A. 2011, 'A global view on the wind sea and swell climate and variability from ERA-40', Journal of Climate, vol. 24, pp. 1461-79. Silva, P.E.D. 2013, ‘Caracterização do padrão de ondas na costa do Brasil por meio de modelagem numérica’, Master thesis, Instituto Nacional de Pesquisas Espaciais. http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2013/03.12.16.55/doc/publicacao.pdf Silveira, I.C.A., Miranda, L.B. & Brown, W.S. 1994, 'On the origins of the North Brazil Current', Journal of Geophysical Research, vol. 99, no. 11, pp. 22501-12. https://doi.org/10.1029/94JC01776 Soares, C., Bento, A.R., Gonçalvez, M., Silva, D. & Martinho, P. 2014, 'Numerical evaluation of the wave energy resource along the Atlantic European coast', Computers & Geosciences, vol. 71, pp. 37-49. https://doi.org/10.1016/j.cageo.2014.03.008 Stopa, J.E., Cheung, K.F. & Chen, Y.L. 2011, 'Assessment of wave energy resources in Hawaii', Renewable Energy, vol. 36, pp. 554-67. https://doi.org/10.1016/j.renene.2010.07.014 Sumer, V., Zhanaltay, Z. & Parkhomchik, L. 2019, ‘Renewable energy in Kazakhstan: potential and challenge’, in D. Kurochkin, E. Shabley & E. Shitlu (eds), Renewable Energy, Palgrave Macmillan, Cham., p. 221-9. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2333 Swan Team 2012, SWAN technical documentation. SWAN cycle II version 40.51, Delft University of Technology, viewed 5 July 2019, <http://falk.ucsd.edu/modeling/swantech.pdf>. Testa, V. & Bosence, D.W.J. 1998, ‘Carbonato-siliciclastic sedimentation on high energy, ocean-facing, tropical ramp, NE Brazil’, in V.P. Wright & T.P. Burchette (eds), Carbonate Ramps, Geological Society, p. 55-71. http://repositorio.ufba.br/ri/handle/ri/13823 Vital, H., Stattegger, K., Amaro, V.E., Schwarzer, K., Frazão, E.P., Tabosa, W.F. & Silveira, I.M. 2008, ‘A modern high-energy siliciclastic–carbonate platform: continental shelf adjacent to northern Rio Grande do Norte state, Northeastern Brazil’, in G.J. Hampson, R.J. Steel, P.M. Burgess & R.W. Dalrymple, Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy (Society for Sedimentary Geology), SEPM Special Publication, no. 90, p. 175–88. https://doi.org/10.2110/pec.08.90 WAMDI Group 1988, 'The WAM model - a third generation ocean wave prediction model', Journal of Physical Oceanography, vol. 18, pp. 1775-810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2 Wang, Y. 2019, 'Efficient prediction of wave energy converters power output considering bottom effects', Ocean Engineering, vol. 181, pp. 89-97. https://doi.org/10.3390/en12224329 Waters, R., Engström, J., Isberg, J. & Leijon, M. 2009, 'Wave climate off the Swedish west coast', Renewable Energy, vol. 34, pp. 1600-6. https://doi.org/10.1016/j.renene.2008.11.016 Westhuysen, A. Van Der., Zijlema, M. & Battjes, J. 2007, 'Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water', Coastal Engineering, vol. 54, pp. 151-71. https://doi.org/10.1016/j.coastaleng.2006.08.006 Wilmott, C.J. 1981, 'On the validation of models', Physical Geography, vol. 2, pp. 1984-94. https://doi.org/10.1080/02723646.1981.10642213 Young, I.R. 1999, 'Seasonal variability of the global ocean wind and wave climate', International Journal of Climatology, vol. 19, pp. 931-50. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
https://revistas.ufrj.br/index.php/aigeo/article/view/46460
doi:10.11137/1982-3908_2022_45_46460
op_rights Direitos autorais 2022 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.11137/1982-3908_2022_45_46460
container_title Anuário do Instituto de Geociências
container_volume 45
_version_ 1766302630290653184
spelling ftufriodejaneiro:oai:www.revistas.ufrj.br:article/46460 2023-05-15T14:28:28+02:00 Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul Matos, Maria de Fátima Alves de Scudelari, Ada Cristina Amaro, Venerando Eustáquio A CAPES pela concessão das bolsas de Pesquisa do Programa Nacional de Pós-Doutorado (PNPD/CAPES) Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Norte e o Projeto UNIVERSAL/CNPq-481386/2012-2 2022-05-18 application/pdf https://revistas.ufrj.br/index.php/aigeo/article/view/46460 https://doi.org/10.11137/1982-3908_2022_45_46460 eng eng Universidade Federal do Rio de Janeiro https://revistas.ufrj.br/index.php/aigeo/article/view/46460/pdf https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16692 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16693 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16694 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16695 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16696 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16697 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16698 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16699 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16700 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16701 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16702 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16703 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16704 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16705 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16706 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16707 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16708 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/46460/16709 Alamian, R., Shafaghat, R., Miri, S.J., Yazdanshenas, N. & Shakeri, M. 2014, 'Evaluation of technologies for harvesting wave energy in Caspian Sea', Renewable and Sustainable Energy Reviews, vol. 32, pp. 468-76. http://dx.doi.org/10.1016/j.rser.2014.01.036 Almeida, N.M., Vital, H. & Eichler, P.P.B. 2017, 'Aspectos sedimentológicos do talude continental setentrional do Rio Grande do Norte, NE do Brasil', Pesquisas em Geociências, vol. 44, no. 3, pp. 537-53. http://dx.doi.org/10.22456/1807-9806.83277 Akpinar, A. & Kömürcü, M.İ. 2012, 'Wave energy potential along the south-east coasts of the Black Sea'. Energy, vol. 42, pp. 289-302. https://doi.org/10.1016/j.energy.2012.03.057 Akpinar, A.; Van Vledder, G.P.; Kömürcü, M.İ. & Özger, M. 2012, 'Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea', Continental Shelf Research, vol. 50, no. 19, pp. 80-99. https://doi.org/10.1016/j.csr.2012.09.012 Battjes, J.A. & Janssen, J.P.F.M. 1978, 'Energy loss and set-up due to breaking of random waves', Proceedings of International Conference on Coastal Engineering, pp. 569-87. https://ascelibrary.org/doi/10.1061/9780872621909.034 Barstow, S., Mørk, G., Mollison, D. & Cruz, J. 2008, ‘The wave energy resource’, in J. Cruz (ed.), Ocean Wave Energy, Current status and future perspectives, Springer, Switzerland, pp. 93-132. Barstow, S., Mørk, G. & Lonseth, L. 2009, 'WorldWaves wave energy resource assessments from the deep ocean to the coast', Proceedings of the 8th European Wave and Tidal Energy Conference, pp. 149-59. http://www.homepages.ed.ac.uk/shs/Wave%20Energy/EWTEC%202009/EWTEC%202009%20(D)/papers/245.pdf Bernhoff, H., Sjostedt, E. & Leijon, M. 2006, 'Wave energy resources in sheltered sea areas: a case study of the Baltic Sea', Renewable Energy, vol. 31, pp. 2164-70. https://doi.org/10.1016/j.renene.2005.10.016 Beyene, A. & Wilson, J.H. 2007, 'Digital mapping of California wave energy resource', International Journal Energy Research, vol. 31, pp. 1156-68. https://doi.org/10.1002/er.1326 Booij, N., Ris, R.C. & Holthuijsen, L.H. 1999, 'A Third-generation Wave Model for Coastal Regions, Part I, Model Description and Validation', Journal of Geophysical Research, vol. 104, no. 4, pp. 7649-66. https://doi.org/10.1029/98JC02622 Carvalho, J.T. 2010, ‘Simulação da distribuição de energia das ondas oceânicas ao largo do litoral brasileiro’, PhD thesis, Instituto Nacional de Pesquisas Espaciais. http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2010/09.27.19.33/doc/publicacao.pdf Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J. & Dias, M.A.F.S. 2009, Tempo e clima no Brasil, Editora Oficina de textos, São Paulo, São Paulo. Chen, F., Lu, S.M., Tseng, K.T., Lee, S.C. & Wang, E. 2010, 'Assessment of renewable energy reserves in Taiwan', Renewable and Sustainable Energy Reviews, vol. 14, pp. 2511-28. https://doi.org/10.1016/j.rser.2010.06.021 Cornett, A.M. 2008, ‘A global wave energy resource assessment’, International Offshore and Polar Engineering Conference, Vancouver, CA, pp. 318-26. Chu, P.C., Galanis, G. & Kuo, Y.H. 2010, ‘Statistical structure of global significant wave heights’, Conference on Probability and Statistics in Atmospheric Sciences, Atlanta, USA, pp. 1-6. Czech, B. & Bauer, P. 2012, 'Wave energy converter concepts: design challenges and classification', Industrial Electronics Magazine, vol. 6, pp. 4-16. https://doi.org/10.1109/MIE.2012.2193290 Defne, Z., Haas, K.A. & Fritz, H.M. 2009, 'Wave power potential along the Atlantic coast of the southeastern USA', Renewable Energy, vol. 34, pp. 2197-205. https://doi.org/10.1016/j.renene.2009.02.019 Espindola, R.L. & Araújo, A.M. 2017, 'Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data', PLOS One, pp. 1-28. https://doi.org/10.1371/journal.pone.0183501 Falcão, A.F.O. 2010, 'Wave energy utilization: A review of the technologies', Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 899-918. https://doi.org/10.1016/j.rser.2009.11.003 Falcão, A.F.O. & Henriques, J.C.C. 2019, 'The spring-like air compressibility effect in oscillating-waters-column wave energy converters: review and analyses', Renewable and Sustainable Energy Reviews, vol. 112, pp. 483-98. https://doi.org/10.1016/j.rser.2019.04.040 Fortes, C.J.E.M., Pinheiro, L. & Palha, A. 2007, ‘O pacote de dados SOPRO: evoluções recentes’, Jornadas Portuguesas de Engenharia Costeira e Portuária, Lisboa, PT, pp. 1-10. Fortes, C.J.E.M., Pinheiro, L. & Santos, J.A. 2011, 'SOPRO 3.0 – Evolução do pacote integrado SOPRO', Vetor, vol. 21, no. 2, pp. 72-100. https://periodicos.furg.br/vetor/article/view/690 Galabov, V. 2013, ‘On the wave energy potential of the Bulgarian Black Sea Coast. Marine and Ocean Ecosystems’, Conference Proceedings of the 13th International Multidisciplinary Scientific Geo Conference, Albena, SGEM, pp. 831-38. Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F. & McGrath, R. 2016, 'The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility', Renewable Energy, vol. 88, pp. 494-516. https://doi.org/10.1016/j.renene.2015.11.010 Gunn, K. & Stock-Williams, C. 2012, 'Quantifying the global wave power', Renewable Energy, vol. 44, pp. 296-304. https://doi.org/10.1016/j.renene.2012.01.101 Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Miller, P., Olbers, D.J., Richter, K., Sell, W. & Walden, H. 1973, 'Measurements of wind wave-growth and swell decay during the Joint North Sea Wave Project (JONSWAP)', Ergnzungsheft Deutschen Hydrographischen Zeitschrift Reihe, vol. 8, no. 12, pp. 1-95. Hughes, M.G. & Heap, A.D. 2010, 'National-scale wave energy resource assessment for Australia', Renewable Energy, vol. 35, pp. 1783-91. https://doi.org/10.1016/j.renene.2009.11.001 Iglesias, G., López, M., Carballo, R., Castro, A., Fraguela, J.A. & Frigaard, P. 2009, 'Wave energy potential in Galicia (NW Spain)', Renewable Energy, vol. 34, pp. 2323-33. https://doi.org/10.1016/j.renene.2009.03.030 Iglesias, G. & Carballo, R. 2010, 'Wave energy and nearshore hot spots: The case of the SE Bay of Biscay', Renewable Energy, vol. 35, pp. 2490-500. https://doi.org/10.1016/j.renene.2010.03.016 Innocentini, V., Prado, S.C.S.C., Pereira, C.S., Arantes, F.O. & Brandão, I.N. 2001, 'Ocorrência de vagas no Arquipélago de São Pedro e São Paulo: Caso 24 de outubro de 1999', Revista Brasileira de Meteorologia, vol. 16, no. 2, pp. 177-86. <http://mtc-m16b.sid.inpe.br/col/cptec.inpe.br/walmeida/2004/11.12.11.14/doc/Luciana.pdf> Jahangir, M.H & Mazinani, M.M. 2020, 'Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea', Renewable Energy, vol. 151, no. 9, pp. 1-31. https://doi.org/10.1016/j.renene.2020.01.012 Jiang, H. & Chen, G. 2013, 'A global view on the swell and wind sea climate by the Jason-1 Mission: A revisit', Journal of Atmospheric and Oceanic Technology, vol. 30, pp. 1833-41. https://doi.org/10.1175/JTECH-D-12-00180.1 Kim, G., Jeong, W.M., Lee, K.S., Jun, K. & Lee, M.E. 2011, 'Offshore and nearshore wave energy assessment around the Korean Peninsula', Energy, vol. 36, pp. 1460-69. https://doi.org/10.1016/j.energy.2011.01.023 Kamranzad, B., Etmad-Shahidi, A. & Chegini, V. 2016, 'Sustainability of wave energy resources in southern Caspian Sea', Energy, vol. 97, pp. 549-59. https://doi.org/10.1016/j.energy.2015.11.063 Komen, G.J., Hasselmann, S. & Hasselmann, K. 1984, 'On the existence of a fully developed wind sea spectrum', Journal of Physical Oceanography, vol. 14, pp. 1271-85. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2 Kompor, W., Ekkawatpanit, C., Kositgittiwong, D. 2018, 'Assessment of ocean wave energy resource potential in Thailand', Ocean and Coastal Management, vol. 160, no. 15, pp. 64-74. https://doi.org/10.1016/j.ocecoaman.2018.04.003 Kumar, V.S., Dubhashi, K.K., Nair, T.M.B. & Singh, J. 2013, 'Wave power potential at a few shallow-water locations around Indian coast', Current Science, vol. 40, no. 9, pp. 1219-24. https://www.jstor.org/stable/24092402 Lanfredi, N.W., Pousa, J.L., Mazio, C.A. & Dragani, W.C. 1992, 'Wave-power potential along the coast of the province of Buenos Aires, Argentina', Energy, vol. 17, pp. 997-1006. https://doi.org/10.1016/0360-5442(92)90016-S Lavidas, G. & Venugopal, V. 2017, 'A 35year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea', Renewable Energy, vol. 103, pp. 401-17. https://doi.org/10.1016/j.renene.2016.11.055 Lenee-Bluhm, P., Paasch, R. & Özkan-Haller, H.T. 2011, 'Characterizing the wave energy resource of the US Pacific Northwest', Renewable Energy, vol. 36, pp. 2106-19. https://doi.org/10.1016/j.renene.2011.01.016 Liberti, L., Carillo, A. & Sannino, G. 2013, 'Wave energy resource assessment in the Mediterranean, the Italian perspective', Renewable Energy, vol. 50, pp. 938-49. https://doi.org/10.1016/j.renene.2012.08.023 Lisboa, R.C., Teixeira, P.R.F. & Fortes, C.J.E.M. 2017, 'Numerical evaluation of wave energy potential in the south of Brazil', Energy, vol. 121, pp. 176-84. https://doi.org/10.1016/j.energy.2017.01.001 López, I., Andreu, J., Ceballos, S. & Alegría, I.M. 2013, 'Review of wave energy technologies and the necessary power-equipment', Renewable and Sustainable Energy Reviews, vol. 27, pp. 413-34. https://doi.org/10.1016/j.rser.2013.07.009 Magagna, D. & Uihlein, A. 2015, JRC ocean energy status report. Technology, market and economic aspects of ocean energy in Europe, EUR 26983, viewed 2 January 2019, <https://op.europa.eu/en/publication-detail/-/publication/359b9147-ab4e-4639-b9db-17a6011a255f/language-en>. Marin, F.O. 2009, ‘A subcorrente Norte do Brasil ao largo da costa do Nordeste’, Master thesis, Universidade de São Paulo. https://teses.usp.br/teses/disponiveis/21/21132/tde-22092009-142640/pt-br.php Matos, M.F.A., Fortes, C.J.E.M., Amaro, V.E. & Scudelari, A.C. 2013, 'Comparative analysis of agitation obtained the numeric model (SWAN) in modeling Rio Grande do Norte (Brazil) northern coastal waves and field data', Revista de Gestão Costeira Integrada, vol. 13, no. 3, pp. 283-99. https://doi.org/10.5894/rgci378 Matos, M.F.A., Amaro, V.E., Fortes, C.J. & Scudelari, A.C. 2014, 'Interação entre ondas oceânicas e fundo marinho: resultados na plataforma continental setentrional do Rio Grande do Norte', Revista Brasileira de Geomorfologia, vol. 15, no. 3, pp. 371-91. https://doi.org/10.20502/rbg.v15i3.458 Mayer, D.A. & Weisberg, R.H. 1993, 'A description of COADS Surface Meteorological Fieldsand the Implied Sverdrup Transports for the Atlantic Ocean from 30°S to 60°N', Journal of Physical Oceanography, vol. 23, pp. 2201-21. https://doi.org/10.1175/1520-0485(1993)023<2201:ADOCSM>2.0.CO;2 Mørk, G., Barstow, S., Kabuth, A. & Pontes, M.T. 2010, ‘Assessing the global wave energy potential’, International Conference on Ocean, Offshore Mechanics and Arctic Engineering, 2010. Shanghai, pp. 1-8. https://doi.org/10.1115/OMAE2010-20473 Nascimento Neto, F.C., Vital, H., Araújo, I.R.F. & Gomes, M.P. 2019, 'Campo de cordões arenosos da plataforma interna setentrional do Rio Grande do Norte, adjacente a Galinhos-Guamaré, Brasil', Anuário do Instituto de Geociências, vol. 42, no. 2, pp. 50-58. https://doi.org/10.11137/2019_2_50_58 One Earth Future 2016, Ocean energy strategic roadmap. Building ocean energy for Europe, report EUR, p. 1-74 Onea, F. & Rusu, L. 2019, 'Wave power variation near the Romanian coastal waters', E3S Web of Conferences, vol. 103, pp. 1-5. https://doi.org/10.1051/e3sconf/201910301006 Pegorelli, C., Dottori, M. & Fortes, J. 2018, 'Evaluating the gravity wave energy potential off the Brazilian coast', Brazilian Journal of Oceanography, vol. 66, no. 2, pp. 220-33. http://dx.doi.org/10.1590/s1679-87592018011706602 Pessoa Neto, O.C. 2003, 'Estratigrafia de sequências da plataforma mista neogênica na Bacia Potiguar, margem equatorial Brasileira', Revista Brasileira de Geociências, vol. 33, pp. 263-78. http://ppegeo.igc.usp.br/index.php/rbg/article/view/9781/9795 Pinheiro, L.V., Fortes, C.J.E.M., Santos, J.A., Neves, M.G., Capitão, R. & Coli, A.B. 2005, ‘SOPRO. Caracterização da agitação marítima. Aplicações’, V Jornadas Portuguesas de Engenharia Costeira e Portuária, Lisboa, pp. 1-10. Pontes, M.T., Aguiar, R. & Pires, H.O. 2005, 'A nearshore wave energy atlas for Portugal', Journal of Offshore Mechanics and Arctic Engineering, vol. 127, pp. 249-55. https://doi.org/10.1115/OMAE2003-37407 Rosman, P.C.C., Neves, C.F., Muehe, D. & Valentini, E.M.S. 2007, Estudos de vulnerabilidade no Litoral do Rio de Janeiro devido às mudanças climáticas, Fundação COPPETEC-PENO, viewed 11 August 2017, http://eadterrazul.org.br/pdf/Documentos/Oficina%20de%20Planejamento%20%20SCSLJ/2%C2%AA%20dia%209.08.14%20Saneamento%20B%C3%A1sico/PENO9501_RelatorioFinal_VulerabilidadeLitoralRJ.pdf Rusu, E. & Soares, C.G. 2009, 'Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore', Renewable Energy, vol. 34, pp. 1501-16. https://doi.org/10.1016/j.renene.2008.10.027 Rusu, L. & Soares, C.G. 2012, 'Wave energy assessments in the Azores islands', Renewable Energy, vol. 45, pp. 183-96. https://doi.org/10.1016/j.renene.2012.02.027 Rusu, E. & Rusu, L. 2019, 'Evaluation of the wind power potential in the European nearshore of the Mediterranean Sea', E3S Web of Conferences, vol. 103, pp. 1-6. https://doi.org/10.1051/e3sconf/201910301003 Saket, A. & Etemad-Shahidi, A. 2012, 'Wave energy potential along the northern coast of the Gulf Oman, Iran', Renewable Energy, vol. 40, no. 1, pp. 90-7. https://doi.org/10.1016/j.renene.2011.09.024 Salcedo-Castro, J., Silva, N.P., Camargo, R., Marone, E. & Sepúlveda, H.H. 2017, 'Estimation on extreme wave heights return period from short-term interpolation of multi-mission satellite data: application to the South Atlantic', Ocean Science Discussion, vol. 81, pp. 1-17. https://doi.org/10.5194/os-14-911-2018 Santos A.J., Fortes, C.J.E.M., Pinheiro, L. & Neves, M.G. 2005, ‘A software package for wave characteristics in ports’, Proceeedings of the 12th International Conference of the International Maritime Association of the Mediterranean, Lisboa. http://repositorio.lnec.pt:8080/xmlui/handle/123456789/5592 Schott, F.A., Fischer, J. & Stramma, L. 1998, 'Transport and pathways of the Upper-layer circulation in the Western Tropical Atlantic', Journal of Physical Oceanography, vol. 28, pp. 1904-28. https://doi.org/10.1175/1520-0485(1998)028<1904:TAPOTU>2.0.CO;2 Semedo, A., Suselj, K., Rutgersson, A. & Sterl, A. 2011, 'A global view on the wind sea and swell climate and variability from ERA-40', Journal of Climate, vol. 24, pp. 1461-79. Silva, P.E.D. 2013, ‘Caracterização do padrão de ondas na costa do Brasil por meio de modelagem numérica’, Master thesis, Instituto Nacional de Pesquisas Espaciais. http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2013/03.12.16.55/doc/publicacao.pdf Silveira, I.C.A., Miranda, L.B. & Brown, W.S. 1994, 'On the origins of the North Brazil Current', Journal of Geophysical Research, vol. 99, no. 11, pp. 22501-12. https://doi.org/10.1029/94JC01776 Soares, C., Bento, A.R., Gonçalvez, M., Silva, D. & Martinho, P. 2014, 'Numerical evaluation of the wave energy resource along the Atlantic European coast', Computers & Geosciences, vol. 71, pp. 37-49. https://doi.org/10.1016/j.cageo.2014.03.008 Stopa, J.E., Cheung, K.F. & Chen, Y.L. 2011, 'Assessment of wave energy resources in Hawaii', Renewable Energy, vol. 36, pp. 554-67. https://doi.org/10.1016/j.renene.2010.07.014 Sumer, V., Zhanaltay, Z. & Parkhomchik, L. 2019, ‘Renewable energy in Kazakhstan: potential and challenge’, in D. Kurochkin, E. Shabley & E. Shitlu (eds), Renewable Energy, Palgrave Macmillan, Cham., p. 221-9. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2333 Swan Team 2012, SWAN technical documentation. SWAN cycle II version 40.51, Delft University of Technology, viewed 5 July 2019, <http://falk.ucsd.edu/modeling/swantech.pdf>. Testa, V. & Bosence, D.W.J. 1998, ‘Carbonato-siliciclastic sedimentation on high energy, ocean-facing, tropical ramp, NE Brazil’, in V.P. Wright & T.P. Burchette (eds), Carbonate Ramps, Geological Society, p. 55-71. http://repositorio.ufba.br/ri/handle/ri/13823 Vital, H., Stattegger, K., Amaro, V.E., Schwarzer, K., Frazão, E.P., Tabosa, W.F. & Silveira, I.M. 2008, ‘A modern high-energy siliciclastic–carbonate platform: continental shelf adjacent to northern Rio Grande do Norte state, Northeastern Brazil’, in G.J. Hampson, R.J. Steel, P.M. Burgess & R.W. Dalrymple, Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy (Society for Sedimentary Geology), SEPM Special Publication, no. 90, p. 175–88. https://doi.org/10.2110/pec.08.90 WAMDI Group 1988, 'The WAM model - a third generation ocean wave prediction model', Journal of Physical Oceanography, vol. 18, pp. 1775-810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2 Wang, Y. 2019, 'Efficient prediction of wave energy converters power output considering bottom effects', Ocean Engineering, vol. 181, pp. 89-97. https://doi.org/10.3390/en12224329 Waters, R., Engström, J., Isberg, J. & Leijon, M. 2009, 'Wave climate off the Swedish west coast', Renewable Energy, vol. 34, pp. 1600-6. https://doi.org/10.1016/j.renene.2008.11.016 Westhuysen, A. Van Der., Zijlema, M. & Battjes, J. 2007, 'Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water', Coastal Engineering, vol. 54, pp. 151-71. https://doi.org/10.1016/j.coastaleng.2006.08.006 Wilmott, C.J. 1981, 'On the validation of models', Physical Geography, vol. 2, pp. 1984-94. https://doi.org/10.1080/02723646.1981.10642213 Young, I.R. 1999, 'Seasonal variability of the global ocean wind and wave climate', International Journal of Climatology, vol. 19, pp. 931-50. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O https://revistas.ufrj.br/index.php/aigeo/article/view/46460 doi:10.11137/1982-3908_2022_45_46460 Direitos autorais 2022 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 CC-BY Anuário do Instituto de Geociências; v. 45 (2022) 1982-3908 0101-9759 Energia das ondas Variabilidade sazonal Nordeste do Brasil info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftufriodejaneiro https://doi.org/10.11137/1982-3908_2022_45_46460 2023-01-01T02:19:41Z Este estudo tem como objetivo descrever o potencial de energia das ondas oceânicas na costa do Estado do Rio Grande do Norte, Extremo Nordeste do Brasil, com base em resultados de simulações numéricas de ondas entre os anos de 2010 a 2017. Para caracterizar o regime das ondas e avaliar o potencial de energia das ondas foram usados os modelos espectrais: WaveWatch III, este para a geração de ondas em águas offshore com saídas para as condições de contorno para o modelo de propagação das ondas; e, o modelo SWAN para as transformações e propagação das ondas geradas ao largo até a zona costeira. Testes de validação foram realizados com dados de medições in situ para ser avaliado o fluxo de energia de ondas em pontos próximos da costa. A avaliação da série temporal dos dados da simulação é apresentada quanto sua variação temporal, incluindo a variabilidade sazonal, e quanto sua distribuição espacial ao longo do domínio geográfico da modelagem. Os resultados estatísticos mostram que ao longo dos anos o potencial de energia das ondas possui variabilidade significativa entre os meses. De dezembro a março a energia das ondas são mais intensas, com valores máximos atingindo 16,7 kW/m e 25,9 kW/m, influenciadas pelas maiores alturas significativas de ondas e direções predominantes de N para NE. De junho a setembro, o comportamento do potencial de energia das ondas é reduzido a baixos níveis, 0,03 e 0,9 kW/m, com ondas provenientes de N a ENE. Em termos de distribuição espacial, o talude continental foi considerado a zona mais energética, com média de 25 kW/m durante o verão. Contudo, os resultados mostraram também que em alguns setores da plataforma continental interna, próximo da profundidade de 25 m, houve a ocorrência de valores de potencial de energia de ondas com máximos de 44 kW/m durante o verão. Article in Journal/Newspaper Arctic Portal de Periódicos da UFRJ (Universidade Federal do Rio de Janeiro) Nordeste ENVELOPE(-66.867,-66.867,-68.167,-68.167) Anuário do Instituto de Geociências 45