Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting

Glacial modulation of melting beneath Iceland provides a unique opportunity to better understand both the nature and length scale of mantle heterogeneity. At the end of the last glacial period, View the MathML source BP, eruption rates were ∼20–100 times greater than in glacial or late postglacial t...

Full description

Bibliographic Details
Main Authors: Sims, Kenneth W.W., Maclennan, John, Blichert-Toft, Janne, Mervine, Evelyn M., Blusztajn, Jurek, Grönvold, Karl
Format: Article in Journal/Newspaper
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.esc.cam.ac.uk/2891/
http://eprints.esc.cam.ac.uk/2891/1/Sims%20et%20al.%20-%202013%20-%20Short%20length%20scale%20mantle%20heterogeneity%20beneath%20Ic.pdf
http://eprints.esc.cam.ac.uk/2891/2/JMAC%201-s2.0-S0012821X13004020-gr001.sml.gif
http://eprints.esc.cam.ac.uk/2891/3/sup1-s2.0-S0012821X13004020-mmc1.jpg
http://eprints.esc.cam.ac.uk/2891/4/sup3-s2.0-S0012821X13004020-mmc3.jpg
http://eprints.esc.cam.ac.uk/2891/5/sup4-s2.0-S0012821X13004020-mmc1.jpg
http://eprints.esc.cam.ac.uk/2891/6/sup5-s2.0-S0012821X13004020-mmc5.jpg
http://eprints.esc.cam.ac.uk/2891/7/sup6-s2.0-S0012821X13004020-mmc6.jpg
http://eprints.esc.cam.ac.uk/2891/8/SUP2-s2.0-S0012821X13004020-mmc2.jpg
http://eprints.esc.cam.ac.uk/2891/9/mmc7.pdf
http://eprints.esc.cam.ac.uk/2891/10/mmc8.pdf
http://eprints.esc.cam.ac.uk/2891/11/mmc9.pdf
http://eprints.esc.cam.ac.uk/2891/12/mmc10.pdf
http://eprints.esc.cam.ac.uk/2891/13/mmc11.docx
http://www.sciencedirect.com/science/article/pii/S0012821X13004020
Description
Summary:Glacial modulation of melting beneath Iceland provides a unique opportunity to better understand both the nature and length scale of mantle heterogeneity. At the end of the last glacial period, View the MathML source BP, eruption rates were ∼20–100 times greater than in glacial or late postglacial times and geophysical modeling posits that rapid melting of the large ice sheet covering Iceland caused a transient increase in mantle decompression melting rates. Here we present the first time-series of Sr–Nd–Hf–Pb isotopic data for a full glacial cycle from a spatially confined region of basaltic volcanism in northern Iceland. Basalts and picrites erupted during the early postglacial burst of volcanic activity are systematically offset to more depleted isotopic compositions than those of lavas erupted during glacial or recent (<7 kyr) times. These new isotopic data, coupled with major and trace element data, show that the mantle underneath northern Iceland is heterogeneous on small (<100 km) length scales. The temporal response of the isotopic compositions of the basalts to glacial unloading indicates that the isotopic composition of mantle heterogeneities can be linked to their melting behavior. The present geochemical data can be accounted for by a melting model in which a lithologically heterogeneous mantle source contains an enriched component more fusible than its companion depleted component.