Melt chemistry and redox conditions control titanium isotope fractionation during magmatic differentiation

Titanium offers a burgeoning isotope system that has shown significant promise as a tracer of magmatic processes. Recent studies have shown that Ti isotopes display significant mass-dependent variations linked to the crystallisation of Fe-Ti oxides during magma differentiation. We present a comprehe...

Full description

Bibliographic Details
Published in:Geochimica et Cosmochimica Acta
Main Authors: Hoare, Liam, Klaver, Martijn, Saji, Nikitha S, Gillies, Jamie, Parkinson, Ian J, Lissenberg, C Johan, Millet, Marc-Alban
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/1983/dd5b0ff4-9956-423e-9805-22acbc95b057
https://research-information.bris.ac.uk/en/publications/dd5b0ff4-9956-423e-9805-22acbc95b057
https://doi.org/10.1016/j.gca.2020.05.015
https://research-information.bris.ac.uk/ws/files/241500775/Hoare_et_al_2020_GCA.pdf
Description
Summary:Titanium offers a burgeoning isotope system that has shown significant promise as a tracer of magmatic processes. Recent studies have shown that Ti isotopes display significant mass-dependent variations linked to the crystallisation of Fe-Ti oxides during magma differentiation. We present a comprehensive set of Ti isotope data for a range of differentiation suites from alkaline (Ascension Island, Afar and Heard Island), calc-alkaline (Santorini) and tholeiitic (Monowai seamount and Alarcon Rise) magma series to further explore the mechanics of Ti isotope fractionation in magmas. Whilst all suites display an increase in δ49/47Ti (deviation in 49Ti/47Ti of a sample relative to the OL-Ti reference material) during magma differentiation relative to indices such as increasing SiO2 and decreasing Mg#, our data reveal that each of the three magma series have contrasting δ49/47Ti fractionation patterns over comparable ranges of SiO2 and Mg#. Alkaline differentiation suites from intraplate settings display the most substantial range of variation (δ49/47Ti = +0.01 to +2.32‰), followed by tholeiites (−0.01 to +1.06‰) and calc-alkaline magmas (+0.06 to +0.64‰). Alkaline magmas possess high initial melt TiO2 contents which enables early saturation of ilmenite + titanomagnetite and a substantial degree of oxide crystallisation, whereas tholeiitic and calc-alkaline suites crystallise fewer oxides and have titanomagnetite as the dominant oxide phase. Positive slopes of FeO*/TiO2 vs. SiO2 during magma differentiation are related to high degrees of crystallisation of Ti-rich oxides (i.e. ilmenite). Bulk solid-melt Ti isotope fractionation factors co-vary with the magnitude of the slope of FeO*/TiO2 vs. SiO2 during magma differentiation.This indicates that the modal abundance and composition of the Fe-Ti oxide phase assemblage, itself is controlled by melt composition, governs Ti isotope fractionation during magma differentiation. In addition to this overall control, hydrous, oxidised calc-alkaline suites display a resolvable ...