Multispectral time series analyses with Landsat and Sentinel-2 to assess permafrost disturbances in North Siberia

Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have d...

Full description

Bibliographic Details
Main Author: Runge, Alexandra
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2021
Subjects:
Ice
Online Access:https://publishup.uni-potsdam.de/frontdoor/index/index/docId/52206
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-522062
https://doi.org/10.25932/publishup-52206
https://publishup.uni-potsdam.de/files/52206/runge_diss.pdf
Description
Summary:Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the dynamic thaw processes and identify the main thaw drivers as well as a continental-scale assessment across diverse permafrost regions are still lacking. In northern high latitudes optical remote sensing is restricted by environmental factors and frequent cloud coverage. This decreases image availability and thus constrains the application of automated algorithms for time series disturbance detection for large-scale abrupt permafrost disturbances at high temporal resolution. Since models and observations suggest that abrupt permafrost disturbances will intensify, we require disturbance products at continental-scale, which allow for meaningful integration into Earth system models. The main aim of this dissertation therefore, is to enhance our knowledge on the spatial extent and temporal dynamics of abrupt permafrost disturbances in a large-scale assessment. To address this, three research objectives were posed: 1. Assess the comparability and compatibility of Landsat-8 and Sentinel-2 data ...