Impact of climate change on the transition of Neanderthals to modern humans in Europe

Two speleothem stable isotope records from East-Central Europe demonstrate that Greenland Stadial 12 (GS12) and G510-at 44.3-43.3 and 40.8-40.2 ka-were prominent intervals of cold and arid conditions. GS12, GS11, and GS10 are coeval with a regional pattern of culturally (near-)sterile layers within...

Full description

Bibliographic Details
Main Authors: Staubwasser, Michael, Dragusin, Virgil, Onac, Bogdan P., Assonov, Sergey, Ersek, Vasile, Hoffmann, Dirk L., Veres, Daniel
Format: Article in Journal/Newspaper
Language:English
Published: NATL ACAD SCIENCES 2018
Subjects:
Online Access:https://kups.ub.uni-koeln.de/17300/
Description
Summary:Two speleothem stable isotope records from East-Central Europe demonstrate that Greenland Stadial 12 (GS12) and G510-at 44.3-43.3 and 40.8-40.2 ka-were prominent intervals of cold and arid conditions. GS12, GS11, and GS10 are coeval with a regional pattern of culturally (near-)sterile layers within Europe's diachronous archeologic transition from Neanderthals to modern human Aurignacian. Sterile layers coeval with G512 precede the Aurignacian throughout the middle and upper Danube region. In some records from the northern Iberian Peninsula, such layers are coeval with GS11 and separate the Chatelperronian from the Aurignacian. Sterile layers preceding the Aurignacian in the remaining Chatelperronian domain are coeval with GS10 and the previously reported 40.0- to 40.8-ka cal BP [calendar years before present (1950)] time range of Neanderthals' disappearance from most of Europe. This suggests that ecologic stress during stadia! expansion of steppe landscape caused a diachronous pattern of depopulation of Neanderthals, which facilitated repopulation by modern humans who appear to have been better adapted to this environment. Consecutive depopulation-repopulation cycles during severe stadials of the middle pleniglacial may principally explain the repeated replacement of Europe's population and its genetic composition.