Isotopic characterization of precipitation and its relationship with groundwater in the Central Andes

[eng] The availability of water resources is increasingly limited worldwide. Therefore, optimal and sustainable management is necessary to ensure a balance between ecosystems and human rights and activities. In the arid Central Andes, there is a great demand for water for different uses, including d...

Full description

Bibliographic Details
Main Author: Valdivielso Mijangos, Sonia
Other Authors: Vázquez-Suñé, Enric, Custodio, Emilio, Universitat de Barcelona. Departament de Mineralogia, Petrologia i Geologia Aplicada
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universitat de Barcelona 2022
Subjects:
Online Access:http://hdl.handle.net/2445/188072
http://hdl.handle.net/10803/675012
Description
Summary:[eng] The availability of water resources is increasingly limited worldwide. Therefore, optimal and sustainable management is necessary to ensure a balance between ecosystems and human rights and activities. In the arid Central Andes, there is a great demand for water for different uses, including domestic consumption, intensive mining and, in some areas, livestock and emerging ecotourism. These human activities must respect and conserve the lagoon systems of the salt flats, on which the fauna depend. Understanding the hydrological and hydrogeological functioning of basins is essential for the optimal and sustainable management of water resources. To address this issue, the objective of this thesis is to advance the knowledge on the isotopic composition of precipitation and its relationship with groundwater in the Central Andes, particularly in the Salar de Atacama basin (Chile). This thesis contributes to the (1) understanding of the origin of precipitation in the Central Andes and reviews how it varies isotopically (δ18O and δ2H) throughout the Amazon basin and in the Central Andes between 14°S and 28°S, (2) identification of the factors that control the isotopic composition of precipitation in areas with scarce isotopic and meteorological data and estimation of the meteorological and isotopic variables of precipitation, (3) characterisation of precipitation and identification of the recharge zone of the Salar de Atacama basin using stable isotopes, and (4) quantification of the contribution of snowmelt to the recharge of the aquifer of the basin. Through an exhaustive review of the literature, precipitation in the Central Andes has been characterised. Precipitation occurs mainly during the austral summer. The masses of humidity have different origin: (1) from the North Atlantic Ocean through the Amazon basin, (2) from the South Atlantic Ocean through the Plate River basin and the Gran Chaco in summer, and (3) the Pacific Ocean in winter. The processes involved in the isotopic evolution of summer convective ...