Simulated single-layer forest canopies delay Northern Hemisphere snowmelt

Single-layer vegetation schemes in modern land surface models have been found to overestimate diurnal cycles in longwave radiation beneath forest canopies. This study introduces an empirical correction, based on forest-stand-scale simulations, which reduces diurnal cycles of sub-canopy longwave radi...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: M. Todt, N. Rutter, C. G. Fletcher, L. M. Wake
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-13-3077-2019
https://www.the-cryosphere.net/13/3077/2019/tc-13-3077-2019.pdf
https://doaj.org/article/f45c19f50a384d3c9de26de291a8080d
Description
Summary:Single-layer vegetation schemes in modern land surface models have been found to overestimate diurnal cycles in longwave radiation beneath forest canopies. This study introduces an empirical correction, based on forest-stand-scale simulations, which reduces diurnal cycles of sub-canopy longwave radiation. The correction is subsequently implemented in land-only simulations of the Community Land Model version 4.5 (CLM4.5) in order to assess the impact on snow cover. Nighttime underestimations of sub-canopy longwave radiation outweigh daytime overestimations, which leads to underestimated averages over the snow cover season. As a result, snow temperatures are underestimated and snowmelt is delayed in CLM4.5 across evergreen boreal forests. Comparison with global observations confirms this delay and its reduction by correction of sub-canopy longwave radiation. Increasing insolation and day length change the impact of overestimated diurnal cycles on daily average sub-canopy longwave radiation throughout the snowmelt season. Consequently, delay of snowmelt in land-only simulations is more substantial where snowmelt occurs early.