Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence

Ground ice is foundational to the integrity of Arctic ecosystems and infrastructure. However, we lack fine-scale ground ice maps across almost the entire Arctic, chiefly because there is no established method for mapping ice-rich permafrost from space. Here, we assess whether remotely sensed late-se...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: S. Zwieback, F. J. Meyer
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
geo
Ice
Online Access:https://doi.org/10.5194/tc-15-2041-2021
https://tc.copernicus.org/articles/15/2041/2021/tc-15-2041-2021.pdf
https://doaj.org/article/d7268d9b4cf44c54b1966962fec1fee7
Description
Summary:Ground ice is foundational to the integrity of Arctic ecosystems and infrastructure. However, we lack fine-scale ground ice maps across almost the entire Arctic, chiefly because there is no established method for mapping ice-rich permafrost from space. Here, we assess whether remotely sensed late-season subsidence can be used to identify ice-rich permafrost. The idea is that, towards the end of an exceptionally warm summer, the thaw front can penetrate materials that were previously perennially frozen, triggering increased subsidence if they are ice rich. Focusing on northwestern Alaska, we test the idea by comparing the Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) late-season subsidence observations to permafrost cores and an independently derived ground ice classification. We find that the late-season subsidence in an exceptionally warm summer was 4–8 cm (5th–95th percentiles) in the ice-rich areas, while it was low in ice-poor areas (−1 to 2 cm; 5th–95th percentiles). The distributions of the late-season subsidence overlapped by 2 %, demonstrating high sensitivity and specificity for identifying top-of-permafrost excess ground ice. The strengths of late-season subsidence include the ease of automation and its applicability to areas that lack conspicuous manifestations of ground ice, as often occurs on hillslopes. One limitation is that it is not sensitive to excess ground ice below the thaw front and thus the total ice content. Late-season subsidence can enhance the automated mapping of permafrost ground ice, complementing existing (predominantly non-automated) approaches based on largely indirect associations with vegetation and periglacial landforms. Thanks to its suitability for mapping ice-rich permafrost, satellite-observed late-season subsidence can make a vital contribution to anticipating terrain instability in the Arctic and sustainably stewarding its ecosystems.