Temporal shift in the isotopic niche of female Antarctic fur seals from Bouvetøya

The Antarctic fur seal (Arctocephalus gazella) is a key marine predator in the Southern Ocean, a region that has recently started to show changes as a result of global climate change. Here, carbon (δ13C) and nitrogen (δ15N) stable isotope analyses on whole blood and plasma samples were used to exami...

Full description

Bibliographic Details
Published in:Polar Research
Main Authors: Arnaud Tarroux, Andrew D. Lowther, Christian Lydersen, Kit M. Kovacs
Format: Article in Journal/Newspaper
Language:English
Published: Norwegian Polar Institute 2016
Subjects:
geo
Online Access:https://doi.org/10.3402/polar.v35.31335
https://doaj.org/article/c9c88faf46714c4e90470949190dfe4f
Description
Summary:The Antarctic fur seal (Arctocephalus gazella) is a key marine predator in the Southern Ocean, a region that has recently started to show changes as a result of global climate change. Here, carbon (δ13C) and nitrogen (δ15N) stable isotope analyses on whole blood and plasma samples were used to examine the isotopic niche of lactating female Antarctic fur seals. Using recently developed Bayesian approaches to determine changes in isotopic niche, a significant increase in δ13C and δ15N was found between 1997 and 2015; this change occurred at an average rate of 0.067‰ (δ13C) and 0.072‰ (δ15N) per year over this period. This suggests that a marked isotopic niche shift has occurred over this period, which very likely corresponds to a shift in diet towards prey at a higher trophic level, such as fish (replacing krill). Although our sampling design prevented us from exploring a seasonal trend in a conclusive manner, our data suggest that concurrent increases in δ13C and δ15N might occur as the breeding season progresses. At a seasonal scale, an average decrease of −0.7‰ per month (95% confidence interval=[−0.9; −0.6]) in δ13C might have occurred, concurrently with an average increase of 1.1‰ per month in δ15N. The results of this study constitute the first isotopic assessment for female Antarctic fur seals from Bouvetøya and provide a baseline for the use of this predator species as a sentinel of the marine trophic system in one of the least studied areas within this species’ distributional range.