Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM)

We present the results of the first ice sheet model intercomparison project for higher-order and full-Stokes ice sheet models. These models are compared and verified in a series of six experiments of which one has an analytical solution obtained from a perturbation analysis. The experiments are appl...

Full description

Bibliographic Details
Main Authors: F. Pattyn, L. Perichon, A. Aschwanden, B. Breuer, B. de Smedt, O. Gagliardini, G. H. Gudmundsson, R. C. A. Hindmarsh, A. Hubbard, J. V. Johnson, T. Kleiner, Y. Konovalov, C. Martin, A. J. Payne, D. Pollard, S. Price, M. Rückamp, F. Saito, O. Souček, S. Sugiyama, T. Zwinger
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2008
Subjects:
geo
Online Access:http://www.the-cryosphere.net/2/95/2008/tc-2-95-2008.pdf
https://doaj.org/article/b3cb2553768447708c9af80d034e588a
Description
Summary:We present the results of the first ice sheet model intercomparison project for higher-order and full-Stokes ice sheet models. These models are compared and verified in a series of six experiments of which one has an analytical solution obtained from a perturbation analysis. The experiments are applied to both 2-D and 3-D geometries; five experiments are steady-state diagnostic, and one has a time-dependent prognostic solution. All participating models give results that are in close agreement. A clear distinction can be made between higher-order models and those that solve the full system of equations. The full-Stokes models show a much smaller spread, hence are in better agreement with one another and with the analytical solution.