Error assessment of satellite-derived lead fraction in the Arctic

Leads within consolidated sea ice control heat exchange between the ocean and the atmosphere during winter, thus constituting an important climate parameter. These narrow elongated features occur when sea ice is fracturing under the action of wind and currents, reducing the local mechanical strength...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: N. Ivanova, P. Rampal, S. Bouillon
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-10-585-2016
http://www.the-cryosphere.net/10/585/2016/tc-10-585-2016.pdf
https://doaj.org/article/a9824a551eaf4633aa7600b207abb641
Description
Summary:Leads within consolidated sea ice control heat exchange between the ocean and the atmosphere during winter, thus constituting an important climate parameter. These narrow elongated features occur when sea ice is fracturing under the action of wind and currents, reducing the local mechanical strength of the ice cover, which in turn impact the sea ice drift pattern. This creates a high demand for a high-quality lead fraction (LF) data set for sea ice model evaluation, initialization, and for the assimilation of such data in regional models. In this context, an available LF data set retrieved from satellite passive microwave observations (Advanced Microwave Scanning Radiometer – Earth Observing System, AMSR-E) is of great value, which has been providing pan-Arctic light- and cloud-independent daily coverage since 2002. In this study errors in this data set are quantified using accurate LF estimates retrieved from Synthetic Aperture Radar (SAR) images employing a threshold technique. A consistent overestimation of LF by a factor of 2–4 is found in the AMSR-E LF product. It is shown that a simple adjustment of the upper tie point used in the method to estimate the LF can reduce the pixel-wise error by a factor of 2 on average. Applying such an adjustment to the full data set may thus significantly increase the quality and value of the original data set.