Smoking guns and volcanic ash: the importance of sparse tephras in Greenland ice cores

Volcanic ash (fine-grained tephra) within Greenland ice cores can complement the understanding of past volcanism and its environmental and societal impacts. The presence of ash in sparse concentrations in the ice raises questions about whether such material represents primary ashfall in Greenland or...

Full description

Bibliographic Details
Published in:Polar Research
Main Authors: Gill Plunkett, Michael Sigl, Jonathan R. Pilcher, Joseph R. McConnell, Nathan Chellman, J.P. Steffensen, Ulf Büntgen
Format: Article in Journal/Newspaper
Language:English
Published: Norwegian Polar Institute 2020
Subjects:
geo
Online Access:https://doi.org/10.33265/polar.v39.3511
https://doaj.org/article/9c757787ee2449f1b5507a647de6e633
Description
Summary:Volcanic ash (fine-grained tephra) within Greenland ice cores can complement the understanding of past volcanism and its environmental and societal impacts. The presence of ash in sparse concentrations in the ice raises questions about whether such material represents primary ashfall in Greenland or resuspended (remobilized) material from continental areas. In this article, we investigate this issue by examining tephra content in quasi-annual samples from two Greenland ice cores during a period of ca. 20 years and considering their relationships with sulphur and particulate data from the same cores. We focus on the interval 815–835 CE as it encompasses a phase (818–822 CE) of heightened volcanogenic sulphur previously ascribed to an eruption of Katla, Iceland. We find that tephra is a frequent but not continuous feature within the ice, unlike similarly sized particulate matter. A solitary ash shard whose major element geochemistry is consistent with Katla corroborates the attribution of the 822±1 CE sulphur peak to this source, clearly showing that a single shard can signify primary ashfall. Other tephras are present in similarly low abundances, but their geochemistries are less certainly attributable to specific sources. Although these tephra shards tend to coincide with elevated sulphur and fine (10 µm) particle concentrations that might be expected if the shards had been transported by dust storms. We conclude that the sparse shards derive from primary ashfall, and we argue that low tephra concentrations should not be dismissed as insignificant.