Reactive nitrogen and sulphate wet deposition at Zeppelin Station, Ny-Ålesund, Svalbard

As a potent fertilizer, reactive nitrogen plays an important role in Arctic ecosystems. Since the Arctic is a nutrient-limited environment, changes in nitrogen deposition can have severe impacts on local ecosystems. To quantify the amount of nitrogen deposited through snow and rain events, precipita...

Full description

Bibliographic Details
Published in:Polar Research
Main Authors: Rafael Kühnel, Mats P. Björkman, Carmen P. Vega, Andy Hodson, Elisabeth Isaksson, Johan Ström
Format: Article in Journal/Newspaper
Language:English
Published: Norwegian Polar Institute 2013
Subjects:
geo
Online Access:https://doi.org/10.3402/polar.v32i0.19136
https://doaj.org/article/9c454244de1b4e0ab379a76844fd7875
Description
Summary:As a potent fertilizer, reactive nitrogen plays an important role in Arctic ecosystems. Since the Arctic is a nutrient-limited environment, changes in nitrogen deposition can have severe impacts on local ecosystems. To quantify the amount of nitrogen deposited through snow and rain events, precipitation sampling was performed at Zeppelin Station, Svalbard, from November 2009 until May 2011. The samples were analysed for , nss- and concentrations, and the deposition of single precipitation events was calculated using precipitation measurements taken at nearby Ny-Ålesund. The majority of observed events showed concentrations ranging from 0.01 to 0.1 mg L−1 N for and and from 0.02 to 0.3 mg L−1 S for nss-. The majority of calculated depositions ranged from 0.01 to 0.1 mg m−2 N for and and from 0.02 to 0.3 mg m−2 S for nss-. The budget was controlled by strong deposition events, caused by long-lasting precipitation episodes that lasted for several days and which had raised concentrations of nitrogen and sulphur. Three future scenarios of increasing precipitation in the Arctic were considered. The results showed that deposition is mainly controlled by the amount of precipitation, which leads to the conclusion that increased precipitation might cause increases in deposition of the same magnitude.