Levels of omega 3 fatty acids, vitamin D, dioxins and dioxin-like PCBs in oily fish; a new perspective on the reporting of nutrient and contaminant data for risk–benefit assessments of oily seafood

Oily seafood is an important food source which contains several key nutrients beneficial for human health. On the other hand, oily seafood also contains persistent organic pollutants (POPs), including the dioxin-like compounds (DLCs) polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (P...

Full description

Bibliographic Details
Published in:Environment International
Main Authors: O.J. Nøstbakken, J.D. Rasinger, R. Hannisdal, M. Sanden, L. Frøyland, A. Duinker, S. Frantzen, L.M. Dahl, A.-K. Lundebye, L. Madsen
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2021
Subjects:
Online Access:https://doi.org/10.1016/j.envint.2020.106322
https://doaj.org/article/951cf5e8506345bc8b6901eac10a8840
Description
Summary:Oily seafood is an important food source which contains several key nutrients beneficial for human health. On the other hand, oily seafood also contains persistent organic pollutants (POPs), including the dioxin-like compounds (DLCs) polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like-polychlorinated biphenyls (dl-PCBs), potentially detrimental to human health. For a comprehensive comparison of the beneficial and potentially adverse health effects of seafood consumption, risk–benefit analyses are necessary. Risk-benefit analyses require reliable quantitative data and sound knowledge of uncertainties and potential biases.Our dataset comprised more than 4000 analyses of DLCs and more than 1000 analyses each of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and vitamin D in the three most important Norwegian commercial oily seafood species: Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus) and farmed Atlantic salmon (Salmo salar). The levels of several DLC congeners were below the limit of quantification (LOQ), making estimation of true levels challenging. We demonstrate that the use of upper bound substitution of censored data will overestimate, while lower bound substitution will underestimate the actual levels of DLCs. Therefore, we implement an alternative robust statistical method by combining Maximum Likelihood Estimation, Regression on Order Statistics and Kaplan-Meier analyses, which is better suited for providing estimations of levels of these contaminants in seafood. Moreover, we illustrate the impact of the toxic equivalency factor (TEF) system on estimation of the sums of DLCs by comparing the TEF system to an alternative system of relative effect potency (REP) factors (Consensus Toxicity Factors).The levels of nutrients and contaminants were related to adequate intake (AI) and tolerable weekly intake (TWI), respectively. We used AI and the TWI values established by the European Food Safety Authority (EFSA). The benefit and the risk ...