Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison

Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wav...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: A. A. Marks, M. L. Lamare, M. D. King
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-11-2867-2017
https://www.the-cryosphere.net/11/2867/2017/tc-11-2867-2017.pdf
https://doaj.org/article/899aead00a2647ff992b10cba3ea1617
Description
Summary:Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ∼ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ∼ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg−1 for four ices. Sea ices were generated with and without ∼ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm−1 (e-folding depths of 10–30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ∼ 75, ∼ 150 and ∼ 300 ng g−1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).