Interpretation of weak backscattering signals in a weakly clouded atmosphere

It is used here the lidar equation describing signals from a weakly turbid atmosphere to solve the problem of the determination of the atmospheric aerosol parameters. It is worthwhile to note that the backscattering and extinction coefficients are constant along the beam path in this case. First app...

Full description

Bibliographic Details
Published in:E3S Web of Conferences
Main Authors: Bobrovsky Anatoly, Dyachenko Natalia, Potapova Irina, Skoblikova Anna, Yakovleva Tat’yana
Format: Article in Journal/Newspaper
Language:English
French
Published: EDP Sciences 2021
Subjects:
geo
Online Access:https://doi.org/10.1051/e3sconf/202124701071
https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/23/e3sconf_icepp21_01071.pdf
https://doaj.org/article/86e4a3fe3e0a4f8fb375644077b242db
Description
Summary:It is used here the lidar equation describing signals from a weakly turbid atmosphere to solve the problem of the determination of the atmospheric aerosol parameters. It is worthwhile to note that the backscattering and extinction coefficients are constant along the beam path in this case. First approximation of the exponent process can be used to describe the atmospheric extinction. The weak lidar signals were analyzed here. It is useful for calculations of the extinction coefficient the preliminary known value of this parameter. The systematic errors were analyzed for different points along the beam path. The signal power was measured at sufficiently large distance. The systematic errors of the extinction coefficient can exceed the systematic errors of the backscattering signal power. It was shown that corresponding value achieve 20. There was investigated the influence of the systematic errors of the measured signal including background light on the obtained results. It was shown that the obtained results cannot be accurate enough if we use preliminary obtained data found before the measurement. It is found that the relative error of the measured signal ˂1%. It is very important the relative error of the corresponding extinction coefficient can be ˃ 100%. There were investigated the results of measurements and the results of computations. First of all it is associated with the scattered irradiance. The cases were considered with absence and presence of water in the aerosol particles coating. It was shown that the developed models adequately describe the process of scattering by a particle. So it is possible significantly reduce the aerosol sizing error. This model can be applied in determining the pollution of the Arctic air basin.