The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean

The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the...

Full description

Bibliographic Details
Published in:Ocean Science
Main Authors: I. I. Pipko, S. P. Pugach, I. P. Semiletov, L. G. Anderson, N. E. Shakhova, Ö. Gustafsson, I. A. Repina, E. A. Spivak, A. N. Charkin, A. N. Salyuk, K. P. Shcherbakova, E. V. Panova, O. V. Dudarev
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
geo
Online Access:https://doi.org/10.5194/os-13-997-2017
https://www.ocean-sci.net/13/997/2017/os-13-997-2017.pdf
https://doaj.org/article/7151962f724c44a1a1a8b7a6b21fcfcf
Description
Summary:The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions. The surface seawater appears in equilibrium or ...