Above- and belowground responses to long-term herbivore exclusion

Herbivores can play an important role in determining arctic ecosystem function with effects determined in part by herbivore identity. We examined the impact of long-term (twenty-two years) small and large mammal herbivore exclusion in two arctic plant communities in northern Alaska: dry heath (DH) a...

Full description

Bibliographic Details
Published in:Arctic, Antarctic, and Alpine Research
Main Authors: Austin Roy, Matthew Suchocki, Laura Gough, Jennie R. McLaren
Format: Article in Journal/Newspaper
Language:English
Published: Taylor & Francis Group 2020
Subjects:
geo
Online Access:https://doi.org/10.1080/15230430.2020.1733891
https://doaj.org/article/615ae310e7e44fdd9adccaa68029ebe8
Description
Summary:Herbivores can play an important role in determining arctic ecosystem function with effects determined in part by herbivore identity. We examined the impact of long-term (twenty-two years) small and large mammal herbivore exclusion in two arctic plant communities in northern Alaska: dry heath (DH) and moist acidic tundra (MAT). Our aims were to examine how herbivore exclusion influences (1) plant communities and (2) soil nutrient pools and microbial processes. Though herbivore absence increased moss and decreased evergreen shrub cover in MAT, there were few other significant effects on vegetation in either community. We also observed no influence of exclusion on most soil properties. However, in DH, phosphatase activity was greater in areas where small mammals alone were present, suggesting that they are altering phosphorus (P) availability, perhaps through herbivores’ influence on the plant community and subsequently on competition for P with the microbial community. We conclude that herbivore impacts in the Arctic are dependent on both the plant community and herbivore identity (size). We show the importance of understanding the roles of herbivores in the Arctic and contribute to a growing number of herbivore studies in a biome likely to experience future changes in herbivore communities and ecosystem function.